Dynamic modeling and error analysis of planar flexible multilink mechanism with clearance and spindle-bearing structure

2019 ◽  
Vol 131 ◽  
pp. 234-260 ◽  
Author(s):  
Enlai Zheng ◽  
Tianyu Wang ◽  
Jun Guo ◽  
Yue Zhu ◽  
Xiangze Lin ◽  
...  
2021 ◽  
Author(s):  
Hongfan Long ◽  
Zhao Han ◽  
Shuyun Jiang ◽  
Enlai Zheng ◽  
Yongnian Zhang ◽  
...  

Abstract In order to study the dynamic position accuracy of bottom dead point (BDP) for multilink high-speed precision presses (MHSPPs), it’s essential to develop a dynamic model of planar multilink mechanism with clearance and spindle-bearing structure. Traditional models always neglect the effect of thermal characteristics of spindle-bearing structure, which reduces the prediction accuracy of dynamic model for multilink transmission mechanisms. To overcome the shortcomings of the previous models, a thermal network model (TNM) of the crankshaft-bearing system is established firstly considering the effects of thermal contact resistance and variable stiffness of bearing concerning the temperature rise. Then, dynamic model of the crankshaft-bearing system is built through the finite element method, which includes rigid disk, Timoshenko beam and quasi-statics model of ACBB. On this basis, an improved dynamic model of planar flexible multilink mechanism with clearance considering the thermal-mechanical coupling effect of the crankshaft-bearing structure is developed and the corresponding dynamic error dimension chain between slider and crankshaft is constructed in this work. Compared to the simulation from traditional models, the simulated slider’s BPD position error from the improved model agrees better with experimental data, which verifies the correctness of the proposed model. It’s demonstrated that the punching force and thermally induced variable stiffness of bearing lead to a significant increase of slider’s BDP position error, which reduces the machining precision of MHSPP. Furthermore, the influence of crankshaft speed, contact angle of bearing and clearance size on the slider’s BDP position error is also investigated.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 2188-2200
Author(s):  
Huihui Sun ◽  
Yujie Zhang ◽  
Bin Xie ◽  
Bin Zi

Author(s):  
Songtao Xi ◽  
Hongrui Cao ◽  
Xuefeng Chen ◽  
Linkai Niu

This paper presents a new dynamic modeling approach for spindle bearing system supported by both angular contact ball bearing (ACBB) and floating displacement bearing (FDB). First, a dynamic model of FDB is developed based on the discrete element method with each bearing component having six degrees-of-freedom (DOFs). Based on the developed FDB dynamic model and Gupta ACBB dynamic model, a fully coupled dynamic model of the spindle bearing system combined both ACBBs, and FDB is developed. In the proposed spindle bearing system model, the spindle shaft is modeled using finite element (FE) method based on the Timoshenko beam theory with the consideration of centrifugal force and gyroscopic moment. The coupling restriction between the dynamic bearing models and the FE spindle shaft model are the restoring forces and moments that are transmitted to the shaft by the bearings and the dynamic vibration response shared by both the bearing inner races and the corresponding nodes of the shaft where bearings are installed. A Fortran language-based program has been developed for the spindle bearing system with the dynamic bearing models solved using the Runge–Kutta–Fehlberg integration method and FE shaft model solved by Newmark-β method. Based on the developed model, the effect of the FDB radial clearance, system preload, and spindle rotating speed on the system dynamics, and the effect of the FDB radial clearance on the system unbalanced response have been investigated.


2021 ◽  
Vol 498 ◽  
pp. 115964
Author(s):  
Zeyuan Xu ◽  
Weidong Zhu ◽  
Guoxing Yi ◽  
Wei Fan

1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


2005 ◽  
Vol 48 (2) ◽  
pp. 208-217 ◽  
Author(s):  
Matthew Watson ◽  
Carl Byington ◽  
Douglas Edwards ◽  
Sanket Amin

Sign in / Sign up

Export Citation Format

Share Document