Concave and convex modifications analysis for skewed beveloid gears considering misalignments

2019 ◽  
Vol 133 ◽  
pp. 127-149 ◽  
Author(s):  
Siyuan Liu ◽  
Chaosheng Song ◽  
Caichao Zhu ◽  
Gaoxiang Ni ◽  
Najeeb Ullah
Keyword(s):  
Procedia CIRP ◽  
2016 ◽  
Vol 43 ◽  
pp. 124-129 ◽  
Author(s):  
C. Brecher ◽  
C. Löpenhaus ◽  
J. Brimmers
Keyword(s):  

2011 ◽  
Vol 121-126 ◽  
pp. 1744-1748
Author(s):  
Xiang Yang Jin ◽  
Tie Feng Zhang ◽  
Li Li Zhao ◽  
He Teng Wang ◽  
Xiang Yi Guan

To determine the efficiency, load-bearing capacity and fatigue life of beveloid gears with intersecting axes, we design a mechanical gear test bed with closed power flow. To test the quality of its structure and predict its overall performance, we establish a three-dimensional solid model for various components based on the design parameters and adopt the technology of virtual prototyping simulation to conduct kinematics simulation on it. Then observe and verify the interactive kinematic situation of each component. Moreover, the finite element method is also utilized to carry out structural mechanics and dynamics analysis on some key components. The results indicate that the test bed can achieve the desired functionality, and the static and dynamic performance of some key components can also satisfy us.


2004 ◽  
Vol 39 (8) ◽  
pp. 883-892 ◽  
Author(s):  
Guixian Li ◽  
Lixiao Wen Jianmin ◽  
Zhang Xin ◽  
Liu Yu
Keyword(s):  

2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Alessio Artoni ◽  
Massimo Guiggiani

The teeth of ordinary spur and helical gears are generated by a (virtual) rack provided with planar generating surfaces. The resulting tooth surface shapes are a circle-involute cylinder in the case of spur gears, and a circle-involute helicoid for helical gears. Advantages associated with involute geometry are well known. Beveloid gears are often regarded as a generalization of involute cylindrical gears involving one additional degree-of-freedom, in that the midplane of their (virtual) generating rack is inclined with respect to the axis of the gear being generated. A peculiarity of their generation process is that the motion of the generating planar surface, seen from the fixed space, is a rectilinear translation (while the gear blank is rotated about a fixed axis); the component of such translation that is orthogonal to the generating plane is the one that ultimately dictates the shape of the generated, envelope surface. Starting from this basic fact, we set out to revisit this type of generation-by-envelope process and to profitably use it to explore peculiar design layouts, in particular for the case of motion transmission between skew axes (and intersecting axes as a special case). Analytical derivations demonstrate the possibility of involute helicoid profiles (beveloids) transmitting motion between skew axes through line contact and, perhaps more importantly, they lead to the derivation of designs featuring insensitivity of the transmission ratio to all misalignments within relatively large limits. The theoretical developments are confirmed by various numerical examples.


2021 ◽  
Vol 111 (05) ◽  
pp. 277-281
Author(s):  
Marius Willecke ◽  
Jens Brimmers ◽  
Christian Brecher

In diesem Beitrag wird die Konzeptionierung und konstruktive Umsetzung eines Back-to-Back-Verspannungsprüfstandes für Tragfähigkeitsuntersuchungen von Beveloidverzahnungen beschrieben. Im Rahmen der Konzeptionierung werden verschiedene Möglichkeiten der Umsetzung erarbeitet und bewertet.   This paper describes the conceptual design and constructive implementation of a back-to-back test rig for load capacity investigations of beveloid gears. In the course of the conceptual design, various options for implementation are developed and evaluated.


2012 ◽  
Vol 215-216 ◽  
pp. 917-920
Author(s):  
Rong Fan ◽  
Chao Sheng Song ◽  
Zhen Liu ◽  
Wen Ji Liu

Dynamic modeling of beveloid gears is less developed than that of spur gears, helical gears and hypoid gears because of their complicated meshing mechanism and 3-dimsional dynamic coupling. In this study, a nonlinear systematic coupled vibration model is created considering the time-varying mesh stiffness, time-varying transmission error, time-varying rotational radius and time-varying friction coefficient. Numerical integration applying the explicite Runge-Kutta formula and the implicit direct integration is used to solve the nonlinear dynamic model. Also, the dynamic characteristics of the marine gear system are investigated.


2014 ◽  
Vol 82 ◽  
pp. 141-153 ◽  
Author(s):  
Caichao Zhu ◽  
Libin Liu ◽  
Chaosheng Song ◽  
Yixin Xiang ◽  
Huaiju Liu

Author(s):  
Chia-Chang Liu ◽  
Chung-Biau Tsay

Abstract A beveloid gear can be viewed as an involute gear of which the profile-shifted coefficient linearly decreases from the heel to the toe. Therefore, tooth undercutting occurs and singular points appear on the tooth surfaces near the toe. When undercutting occurs, the gear tooth is comparatively weak. In this study, the conditions of tooth undercutting of beveloid gears were derived and specific phenomena were also investigated by numerical illustrated examples. In addition, according to the characteristics of tooth undercutting on the beveloid gear tooth surface, a novel type hob cutter with varying cutting depths was designed to avoid tooth undercutting of the beveloid gear.


2015 ◽  
Vol 92 ◽  
pp. 17-28 ◽  
Author(s):  
Chaosheng Song ◽  
Caichao Zhu ◽  
Huaiju Liu ◽  
Gaoxiang Ni

Sign in / Sign up

Export Citation Format

Share Document