An analytical stiffness method for spring-articulated planar serial or quasi-serial manipulators under gravity and an arbitrary load

2019 ◽  
Vol 137 ◽  
pp. 108-126 ◽  
Author(s):  
Linh Nguyen Vu ◽  
Chin-Hsing Kuo
2021 ◽  
pp. 1-1
Author(s):  
Michael Fennel ◽  
Antonio Zea ◽  
Johannes Mangler ◽  
Arne Roennau ◽  
Uwe D. Hanebeck

2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110144
Author(s):  
Qianqian Zhang ◽  
Daqing Wang ◽  
Lifu Gao

To assess the inverse kinematics (IK) of multiple degree-of-freedom (DOF) serial manipulators, this article proposes a method for solving the IK of manipulators using an improved self-adaptive mutation differential evolution (DE) algorithm. First, based on the self-adaptive DE algorithm, a new adaptive mutation operator and adaptive scaling factor are proposed to change the control parameters and differential strategy of the DE algorithm. Then, an error-related weight coefficient of the objective function is proposed to balance the weight of the position error and orientation error in the objective function. Finally, the proposed method is verified by the benchmark function, the 6-DOF and 7-DOF serial manipulator model. Experimental results show that the improvement of the algorithm and improved objective function can significantly improve the accuracy of the IK. For the specified points and random points in the feasible region, the proportion of accuracy meeting the specified requirements is increased by 22.5% and 28.7%, respectively.


AIAA Journal ◽  
1964 ◽  
Vol 2 (6) ◽  
pp. 1161-1161
Author(s):  
E. L. COOK ◽  
R. E. CHAPEL ◽  
W. D. BERNHART

2014 ◽  
Vol 983 ◽  
pp. 420-423
Author(s):  
Sheng Guo Zhang ◽  
Xiao Ping Dang

This paper aims at directly modeling the transfer functions of mass-spring-damper systems. Using complex stiffness of mass, spring, and damper elements and equivalent complex stiffness of these elements in series and/or in parallel, the transfer functions of the mass-spring-damper systems are modeled quickly. This is very convenient to the modeling of the complicated mechanical systems.


The circumstances are discussed under which orthogonal relations exist between the elastic critical modes of plane frames subjected to proportional loading. Orthogonal relations may be obtained provided the loading does not produce any components of deformation associated with any of the critical modes at arbitrary levels of the load factor, and provided no part of the structure remains statically indeterminate due to bar forces when all rigid joints are replaced by pin joints. When at arbitrary load factors, the structure deforms with components associated with any of the buckling modes, the elastic failure load is not identical with the lowest elastic critical load, although for many frames the two loads may be very close. A general expression is obtained which reveals the relation between the deformations at an arbitrary load level and the deflexions given by linear analysis. The difference between the elastic failure load and the elastic critical load is discussed, and an approximate treatment applicable to certain types of frame and associated loading is developed.


Author(s):  
Wang Shigang ◽  
Yu Jun ◽  
Zhou Ji ◽  
Li Mingzhang

Abstract In this paper, A 3-D elasto-plastic contact problem in bearings is studied by Finite Element Method (FEM). A computer program has been developed for this purpose. A trial-error method is employed to cope with the geometrical nonlinearity and a tangential stiffness method is employed to tackle the material nonlinearity appeared in elasto-plastic contact problems. A frictionless contact problem of roller bearings is analysed, the result reveals that in 3-D elasto-plastic state the trend of the contact surface pressure distribution is similar to Hertz problem’s but flater.


Sign in / Sign up

Export Citation Format

Share Document