Dynamic characteristics and reliability analysis of ball screw feed system on a lathe

2020 ◽  
Vol 150 ◽  
pp. 103890
Author(s):  
Mengtao Xu ◽  
Bing Cai ◽  
Changyou Li ◽  
Hongzhuang Zhang ◽  
Zhendong Liu ◽  
...  
2013 ◽  
Vol 470 ◽  
pp. 593-597 ◽  
Author(s):  
Jun Huang ◽  
Zhen Hua Wang ◽  
Jun Tang Yuan

The vibration modals and harmonic responses of the dual ball screw-driven feed system in Z direction are analyzed by the software ANSYS. In this paper, the equivalence of characteristics of fixed and rolling joints is emphasized, while the influence of joint faces on the dual ball screw-driven feed system is analyzed. In addition, the FEM results of spindle and spindle box connecting the feed system are compared with the modal testing value. The results show that the relative errors between corresponding order natural frequency and the test results are within 10%, which verified the accuracy of the modeling method, and the influence of combination on the analysis of the ball screw feed system can't be ignored. Depending on the above, weaknesses of dual ball screw-driven feed structure is found out, which provides the basis for structural optimization.


Author(s):  
Jianguo Gu ◽  
Yimin Zhang

In this study, a single-degree-of-freedom model is established to investigate the dynamic characteristics of a single-nut double-cycle ball screw feed system by considering the contact states of the nonlinear kinematic joints. Based on fully considering the parameters of the ball screw feed system, the axial deformations and forces of the key components are calculated to construct a set of piecewise-nonlinear restoring force functions of the system displacement and worktable position. The variations of the contact stiffnesses of the kinematic joints and transmission stiffness of the system with different boundary conditions are analyzed and the results indicate that they all have abrupt changes when the system displacement reaches a critical value. The changing law of the system transmission stiffness in the whole stoke is discussed. Additionally, the effects of excitation force, worktable position and system mass on the dynamic characteristics of the system and its correlative components are analyzed.


Author(s):  
Zaiwu Mei ◽  
Liping Chen ◽  
Jianwan Ding

An accurate dynamic model for the computer numerical control machine tool feed system is of great significance to improve the machining accuracy. However, the accurate dynamic model of the feed system is difficult to be established because its dynamic characteristics not only depend on the performance of subsystems, such as mechanical, electrical, and control, but also on the interaction between them. In order to solve this problem, a modular modeling method based on a non-causal connection is proposed in this article, and the multi-domain seamless integrated model for the ball screw feed system is established. First, the feed system is decomposed by modularization, and the interface models in each domain are defined. Then all the subsystems are modeled strictly, and the nonlinear characteristics of each subsystem are analyzed. Finally, the multi-domain seamless integrated model of the ball screw feed system is established by the non-causal connection of subsystem models, and the experiment is carried out to validate the system model. The experimental results show that the multi-domain seamless integrated model of the ball screw feed system established in this article can accurately reflect the dynamic characteristics of the real physical system, and has high prediction accuracy for the dynamic following error. It is of great significance to further study the multi-domain coupling characteristics and compensation control methods of the machine tool system.


Author(s):  
Cunfan Zou ◽  
Huijie Zhang ◽  
Dun Lu ◽  
Jun Zhang ◽  
Wanhua Zhao

The study on the position-dependent dynamic characteristics of a vertical ball screw feed system without counterweight is an important step in the enhancement of the structural performance of mini-type vertical milling machines. The ball screw is generally driven by a servomotor, which converts a rotary motion into a linear motion through a screw–nut pair. To assess the position-dependent dynamic characteristics of a vertical ball screw feed system subjected to the influence of the screw–nut joint stiffness, a variable-coefficient lumped parameter model of the system is developed. This model is established taking into account the screw–nut joint stiffness under three different strategies: (1) considering the preload and the weight of the spindle system, (2) considering the elastic deformation but ignoring the effect of the weight, and (3) a perfectly rigid model. The differences between the three models in predicting the position-dependent dynamic characteristics of the system are compared, revealing that the stiffness of screw–nut joint greatly affects the vibratory behavior of the spindle system in the transmission direction. A set of conducted experimental results demonstrate that the stiffness model under the preload and the weight of the spindle system is the most accurate model for the prediction of the position-dependent natural frequency and displacement response of the system with the spindle system position. Therefore, it is more suitable for structure design, performance simulation, and evaluation of a vertical ball screw feed system without counterweight.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 686 ◽  
Author(s):  
Meng Duan ◽  
Hong Lu ◽  
Xinbao Zhang ◽  
Yongquan Zhang ◽  
Zhangjie Li ◽  
...  

It is of great significance to study the dynamic characteristics of twin ball screw (TBS) feed system to improve the precision of gantry-type dual-driven computer numerical control (CNC) machine tools. In this paper, an equivalent dynamic model of the TBS feed system is established utilizing lumped mass method considering the stiffness of joints. Equivalent axial stiffness of screw-nut joints and bearing joints are both calculated by Hertz contact theory. Furthermore, a friction model is proposed because the friction force of the screw nut affects the stiffness of the joints. Then, the friction parameters are obtained by using the nonlinear system identification method. Meanwhile, a finite element model (FEM) is developed to assess the dynamic characteristics of TBS feed system under the stiffness of joints. Finally, validation experiments are conducted, and the results show that the positions of the nut and the velocities of worktable greatly affect the dynamic characteristics of the TBS feed system. Compared with the theoretical calculation, FEM and experiments indicate that the dynamic modeling proposed in this article can reach a higher accuracy.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Dazhong Wang ◽  
Yan Lu ◽  
Tongchao Zhang ◽  
Keyong Wang ◽  
Akira Rinoshika

Dynamic characteristic of ball screw feed system in a milling machine is studied numerically in this work. In order to avoid the difficulty in determining the stiffness of rolling joints theoretically, a dynamic modeling method for analyzing the feed system is discussed, and a stiffness calculation method of the rolling joints is proposed based on the Hertz contact theory. Taking a 3-axis computer numerical control (CNC) milling machine set ermined as a research object, the stiffness of its fixed joint between the column and the body together with the stiffness parameters of the rolling joints is evaluated according to the Takashi Yoshimura method. Then, a finite element (FE) model is established for the machine tool. The correctness of the FE model and the stiffness calculation method of the rolling joints are validated by theoretical and experimental modal analysis results of the machine tool’s workbench. Under the two modeling methods of joints incorporating the stiffness parameters and rigid connection, a theoretical modal analysis is conducted for the CNC milling machine. The natural frequencies and modal shapes reveal that the joints’ dynamic characteristic has an important influence on the dynamic performance of a whole machine tool, especially for the case with natural frequency and higher modes.


2021 ◽  
Author(s):  
Mengtao Xu ◽  
Changyou Li ◽  
Hongzhuang Zhang ◽  
Zhendong Liu ◽  
Yimin Zhang

Abstract Modern tendency of machine tools design requires more accurate model to predict the system dynamics, in order to anticipate its interaction with machining process. In this paper, a comprehensive dynamic model of ball screw feed system (BSFS) considering nonlinear kinematic joints is introduced to investigate the varying dynamic characteristics when worktable is subjected to combined load from six directions. The load-deformation relationship of each kinematic joint is dealt with a set of translational and angular spring elements. The nonlinear restoring force function of each joint involving coupling displacement is calculated. Based on the lumped mass method, the analytical 18-DOF dynamic equation is formulated by the analysis of force dependence between joints. Model verification tests are conducted. The worktable response exhibits the abundant and fascinating nonlinear phenomena arising in nonlinear joint and coupling effect. The nonlinear behavior behaves significant difference owing to the variations of excitation, platform position, screw length, preload and damping of joints. Thus, the model is promising for comprehension of machine dynamic behavior and for development of sophisticated control strategy.


Sign in / Sign up

Export Citation Format

Share Document