Manganese dioxide-filled hierarchical porous nanofiber membrane for indoor air cleaning at room temperature

2020 ◽  
Vol 605 ◽  
pp. 118094 ◽  
Author(s):  
Min Hu ◽  
Linghui Yin ◽  
Huixian Zhou ◽  
Lvxiong Wu ◽  
Kai Yuan ◽  
...  
2020 ◽  
Vol 594 ◽  
pp. 117467 ◽  
Author(s):  
Min Hu ◽  
Linghui Yin ◽  
Nicholas Low ◽  
Donghuan Ji ◽  
Yishui Liu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1052
Author(s):  
Ida Kraševec ◽  
Nataša Nemeček ◽  
Maja Lozar Štamcar ◽  
Irena Kralj Cigić ◽  
Helena Prosen

Wood is a natural polymeric material that is an important constituent of many heritage collections. Because of its susceptibility to biodegradation, it is often chemically treated with substances that can be harmful to human health. One of the most widely used wood preservatives was pentachlorophenol (PCP), which is still present in museum objects today, although its use has been restricted for about forty years. The development of non-destructive methods for its determination, suitable for the analysis of valuable objects, is therefore of great importance. In this work, two non-destructive solid-phase microextraction (SPME) methods were developed and optimized, using either headspace or contact mode. They were compared with a destructive solvent extraction method and found to be suitable for quantification in the range of 7.5 to 75 mg PCP/kg wood at room temperature. The developed semi-quantitative methods were applied in the wooden furniture depot of National Museum of Slovenia. PCP was detected inside two furniture objects using headspace mode. The pesticide lindane was also detected in one object. The indoor air of the depot with furniture was also sampled with HS SPME, and traces of PCP were found. According to the results, SPME methods are suitable for the detection of PCP residues in museum objects and in the environment.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Shiqiang Zhou ◽  
Mingpeng Chen ◽  
Qingjie Lu ◽  
Yumin Zhang ◽  
Jin Zhang ◽  
...  

AbstractFormaldehyde (HCHO) is the main source of indoor air pollutant. HCHO sensors are therefore of paramount importance for timely detection in daily life. However, existing sensors do not meet the stringent performance targets, while deactivation due to sensing detection at room temperature, for example, at extremely low concentration of formaldehyde (especially lower than 0.08 ppm), is a widely unsolved problem. Herein, we present the Ag nanoparticles (Ag NPs) sensitized dispersed In2O3 nanograin via a low-fabrication-cost hydrothermal strategy, where the Ag NPs reduces the apparent activation energy for HCHO transporting into and out of the In2O3 nanoparticles, while low concentrations detection at low working temperature is realized. The pristine In2O3 exhibits a sluggish response (Ra/Rg = 4.14 to 10 ppm) with incomplete recovery to HCHO gas. After Ag functionalization, the 5%Ag-In2O3 sensor shows a dramatically enhanced response (135) with a short response time (102 s) and recovery time (157 s) to 1 ppm HCHO gas at 30 °C, which benefits from the Ag NPs that electronically and chemically sensitize the crystal In2O3 nanograin, greatly enhancing the selectivity and sensitivity.


2018 ◽  
Vol 19 (10) ◽  
pp. 2966 ◽  
Author(s):  
Shu-Ye Jiang ◽  
Ali Ma ◽  
Srinivasan Ramachandran

Negative air ions (NAIs) have been discovered for more than 100 years and are widely used for air cleaning. Here, we have carried out a comprehensive reviewing on the effects of NAIs on humans/animals, and microorganisms, and plant development. The presence of NAIs is credited for increasing psychological health, productivity, and overall well-being but without consistent or reliable evidence in therapeutic effects and with controversy in anti-microorganisms. Reports also showed that NAIs could help people in relieving symptoms of allergies to dust, mold spores, and other allergens. Particulate matter (PM) is a major air pollutant that affects human health. Experimental data showed that NAIs could be used to high-efficiently remove PM. Finally, we have reviewed the plant-based NAI release system under the pulsed electric field (PEF) stimulation. This is a new NAI generation system which releases a huge amount of NAIs under the PEF treatment. The system may be used to freshen indoor air and reduce PM concentration in addition to enriching oxygen content and indoor decoration at home, school, hospital, airport, and other indoor areas.


2019 ◽  
Vol 111 ◽  
pp. 06035
Author(s):  
Sihwan Lee

While air conditioner is running, opening doors and windows is a great way to reduce operating efficiency and undermine the air conditioning system’s ability to bring the indoor to a comfortable temperature. The purpose of this study is to evaluate the heat loss and thermal environment through the door open while air conditioner running. To achieve this goal, using full-scale measurement with the commercial store during the cooling period, the infiltration rate, thermal environment and energy consumption of air conditioners with door opened and door closed state were measured. The measured results show that the infiltration rate at the door opened state was increased by about 21.3 times compared to the door closed state. When the set temperature of the air conditioner was 24 °C, the room temperature in the opening gate cooling was measured to be about 5 °C higher than the closing gate cooling. However, the energy consumption was measured approximately 12 kWh/day and there was no difference with door state. This means that the energy consumption is not increased if the indoor air temperature would not reach the set point temperature of air conditioner.


2018 ◽  
Vol 137 ◽  
pp. 226-234 ◽  
Author(s):  
Qiwen Jiang ◽  
Cong Ding ◽  
Yanhua Liu

2020 ◽  
Vol 12 (21) ◽  
pp. 8774
Author(s):  
Alireza Afshari ◽  
Lars Ekberg ◽  
Luboš Forejt ◽  
Jinhan Mo ◽  
Siamak Rahimi ◽  
...  

Many people spend most of their time in an indoor environment. A positive relationship exists between indoor environmental quality and the health, wellbeing, and productivity of occupants in buildings. The indoor environment is affected by pollutants, such as gases and particles. Pollutants can be removed from the indoor environment in various ways. Air-cleaning devices are commonly marketed as benefiting the removal of air pollutants and, consequently, improving indoor air quality. Depending on the type of cleaning technology, air cleaners may generate undesired and toxic byproducts. Different air filtration technologies, such as electrostatic precipitators (ESPs) have been introduced to the market. The ESP has been used in buildings because it can remove particles while only causing low pressure drops. Moreover, ESPs can be either in-duct or standalone units. This review aims to provide an overview of ESP use, methods for testing this product, the performance of existing ESPs concerning removing pollutants and their byproducts, and the existing market for ESPs.


Sign in / Sign up

Export Citation Format

Share Document