Autoantibodies against modified apolipoprotein B-100 in relation to low-density lipoprotein size and the metabolic syndrome in otherwise healthy men

Metabolism ◽  
2008 ◽  
Vol 57 (3) ◽  
pp. 362-366 ◽  
Author(s):  
Per Sjögren ◽  
Gunilla N. Fredrikson ◽  
Magdalena Rosell ◽  
Ulf de Faire ◽  
Anders Hamsten ◽  
...  
2006 ◽  
Vol 111 (3) ◽  
pp. 193-199 ◽  
Author(s):  
Gerald F. Watts ◽  
Juying Ji ◽  
Dick C. Chan ◽  
Esther M. M. Ooi ◽  
Anthony G. Johnson ◽  
...  

The aim of the present study was to investigate the association between changes in apoB (apolipoprotein B-100) kinetics and plasma PLTP (phospholipid transfer protein) and CETP (cholesteryl ester transfer protein) activities in men with MetS (the metabolic syndrome) treated with fenofibrate. Eleven men with MetS underwent a double-blind cross-over treatment with fenofibrate (200 mg/day) or placebo for 5 weeks. Compared with placebo, fenofibrate significantly increased the FCRs (fractional catabolic rates) of apoB in VLDL (very-low-density lipoprotein), IDL (intermediate-density lipoprotein) and LDL (low-density lipoprotein) (all P<0.01), with no significant reduction (−8%; P=0.131) in VLDL-apoB PR (production rate), but an almost significant increase (+15%, P=0.061) in LDL-apoB PR. Fenofibrate significantly lowered plasma TG [triacylglycerol (triglyceride); P<0.001], the VLDL-TG/apoB ratio (P=0.003) and CETP activity (P=0.004), but increased plasma HDL (high-density lipoprotein)-cholesterol concentration (P<0.001) and PLTP activity (P=0.03). The increase in PLTP activity was positively associated with the increase in both LDL-apoB FCR (r=0.641, P=0.034) and PR (r=0.625, P=0.040), and this was independent of the fall in plasma CETP activity and lathosterol level. The decrease in CETP activity was positively associated with the decrease in VLDL-apoB PR (r=0.615, P=0.044), but this association was not robust and not independent of changes in PLTP activity and lathosterol levels. Hence, in MetS, the effects of fenofibrate on plasma lipid transfer protein activities, especially PLTP activity, may partially explain the associated changes in apoB kinetics.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zaza Makaridze ◽  
Elene Giorgadze ◽  
Ketevan Asatiani

The study was designed to assess the association between insulin resistance (IR) and apolipoprotein B/apolipoprotein A-I ratio (ApoB/ApoA-I ratio), metabolic syndrome (MetS) components, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) in the nondiabetic population of Georgia. The subjects were 1522 Georgians of Caucasian origin (mean age = 45 years, 653 women) without diabetes who had visited the clinics for a related health checkup between 2012 and 2013. IR was calculated using the computer homeostasis model assessment (HOMA2-IR) and was defined as the upper quartile. MetS was diagnosed using the updated ATP-III definition of the metabolic syndrome. Logistic and multiple regression models were used to estimate the association between IR and other components. IR was positively correlated with age, ApoB, ApoB/ApoA-I ratio, MetS components (excluding high-density lipoprotein cholesterol—HDL-C), LDL-C, fasting insulin, and TC and negatively correlated with HDL-C and ApoA-I in both sexes (allP<0.001). In the logistic regression models, gender, age, ApoB/ApoA-I ratio, diastolic pressure, HDL-C, LDL-C, fasting glucose, and triglycerides were the covariates significantly associated with IR (OR: 8.64, 1.03, 17.95, 1.06, 0.13, 1.17, 3.75, and 2.29, resp.; allP<0.05). Multiple regression models demonstrated that these components (except for HDL-C) made an independent contribution to the prediction of HOMA2 (allP<0.05).


Sign in / Sign up

Export Citation Format

Share Document