Clostridioides difficile spore germination: initiation to DPA release

2022 ◽  
Vol 65 ◽  
pp. 101-107
Author(s):  
Marko Baloh ◽  
Joseph A Sorg
Author(s):  
Jacqueline R. Phan ◽  
Dung M. Do ◽  
Minh Chau Truong ◽  
Connie Ngo ◽  
Julian H. Phan ◽  
...  

Clostridioides difficile infection (CDI) is the major identifiable cause of antibiotic-associated diarrhea. The emergence of hypervirulent C. difficile strains has led to increases in both hospital- and community-acquired CDI. Furthermore, CDI relapse from hypervirulent strains can reach up to 25%. Thus, standard treatments are rendered less effective, making new methods of prevention and treatment more critical. Previously, the bile salt analog CamSA was shown to inhibit spore germination in vitro and protect mice and hamsters from C. difficile strain 630. Here, we show that CamSA was less active at preventing spore germination of other C. difficile ribotypes, including the hypervirulent strain R20291. Strain-specific in vitro germination activity of CamSA correlated with its ability to prevent CDI in mice. Additional bile salt analogs were screened for in vitro germination inhibition activity against strain R20291, and the most active compounds were tested against other strains. An aniline-substituted bile salt analog, (CaPA), was found to be a better anti-germinant than CamSA against eight different C. difficile strains. In addition, CaPA was capable of reducing, delaying, or preventing murine CDI signs in all strains tested. CaPA-treated mice showed no obvious toxicity and showed minor effects on their gut microbiome. CaPA’s efficacy was further confirmed by its ability to prevent CDI in hamsters infected with strain 630. These data suggest that C. difficile spores respond to germination inhibitors in a strain-dependent manner. However, careful screening can identify anti-germinants with broad CDI prophylaxis activity.


2020 ◽  
Vol 76 (1) ◽  
pp. 171-178
Author(s):  
Anthony M Buckley ◽  
James Altringham ◽  
Emma Clark ◽  
Karen Bently ◽  
William Spittal ◽  
...  

Abstract Objectives The approval of new antibiotics is essential to combat infections caused by antimicrobial-resistant pathogens; however, such agents should be tested to determine their effect on the resident microbiota and propensity to select for opportunistic pathogens, such as Clostridioides difficile. Eravacycline is a new antibiotic for the treatment of complicated intra-abdominal infections. Here, we determined the effects of eravacycline compared with moxifloxacin on the microbiota and if these were conducive to induction of C. difficile infection (CDI). Methods We seeded in vitro chemostat models, which simulate the physiological conditions of the human colon, with a human faecal slurry and instilled gut-reflective concentrations of either eravacycline or moxifloxacin. Results Eravacycline instillation was associated with decreased Bifidobacterium, Lactobacillus and Clostridium species, which recovered 1 week after exposure. However, Bacteroides spp. levels decreased to below the limit of detection and did not recover prior to the end of the experiment. Post-eravacycline, a bloom of aerobic bacterial species occurred, including Enterobacteriaceae, compared with pre-antibiotic, which remained high for the duration of the experiment. These changes in microbiota were not associated with induction of CDI, as we observed a lack of C. difficile spore germination and thus no toxin was detected. Moxifloxacin exposure sufficiently disrupted the microbiota to induce simulated CDI, where C. difficile spore germination, outgrowth and toxin production were seen. Conclusions These model data suggest that, despite the initial impact of eravacycline on the intestinal microbiota, similar to clinical trial data, this novel tetracycline has a low propensity to induce CDI.


mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Oscar R. Diaz ◽  
Cameron V. Sayer ◽  
David L. Popham ◽  
Aimee Shen

ABSTRACTClostridium difficile, also known asClostridioides difficile, is a Gram-positive, spore-forming bacterium that is a leading cause of antibiotic-associated diarrhea.C. difficileinfections begin when its metabolically dormant spores germinate to form toxin-producing vegetative cells. Successful spore germination depends on the degradation of the cortex, a thick layer of modified peptidoglycan that maintains dormancy. Cortex degradation is mediated by the SleC cortex lytic enzyme, which is thought to recognize the cortex-specific modification muramic-δ-lactam.C. difficilecortex degradation also depends on thePeptostreptococcaceae-specific lipoprotein GerS for unknown reasons. In this study, we tested whether GerS regulates production of muramic-δ-lactam and thus controls the ability of SleC to recognize its cortex substrate. By comparing the muropeptide profiles of ΔgerSspores to those of spores lacking either CwlD or PdaA, both of which mediate cortex modification inBacillus subtilis, we determined thatC. difficileGerS, CwlD, and PdaA are all required to generate muramic-δ-lactam. Both GerS and CwlD were needed to cleave the peptide side chains from N-acetylmuramic acid, suggesting that these two factors act in concert. Consistent with this hypothesis, biochemical analyses revealed that GerS and CwlD directly interact and that CwlD modulates GerS incorporation into mature spores. Since ΔgerS, ΔcwlD, and ΔpdaAspores exhibited equivalent germination defects, our results indicate thatC. difficilespore germination depends on cortex-specific modifications, reveal GerS as a novel regulator of these processes, and highlight additional differences in the regulation of spore germination inC. difficilerelative toB. subtilisand other spore-forming organisms.IMPORTANCEThe Gram-positive, spore-forming bacteriumClostridium difficileis a leading cause of antibiotic-associated diarrhea. BecauseC. difficileis an obligate anaerobe, its aerotolerant spores are essential for transmitting disease, and their germination into toxin-producing cells is necessary for causing disease. Spore germination requires the removal of the cortex, a thick layer of modified peptidoglycan that maintains spore dormancy. Cortex degradation is mediated by the SleC hydrolase, which is thought to recognize cortex-specific modifications. Cortex degradation also requires the GerS lipoprotein for unknown reasons. In our study, we tested whether GerS is required to generate cortex-specific modifications by comparing the cortex composition of ΔgerSspores to the cortex composition of spores lacking two putative cortex-modifying enzymes, CwlD and PdaA. These analyses revealed that GerS, CwlD, and PdaA are all required to generate cortex-specific modifications. Since loss of these modifications in ΔgerS, ΔcwlD, and ΔpdaAmutants resulted in spore germination and heat resistance defects, the SleC cortex lytic enzyme depends on cortex-specific modifications to efficiently degrade this protective layer. Our results further indicate that GerS and CwlD are mutually required for removing peptide chains from spore peptidoglycan and revealed a novel interaction between these proteins. Thus, our findings provide new mechanistic insight intoC. difficilespore germination.


2019 ◽  
Author(s):  
M. Lauren Donnelly ◽  
Emily R. Forster ◽  
Amy E. Rohlfing ◽  
Aimee Shen

AbstractClostridioides difficile is a spore-forming bacterial pathogen that is the leading cause of hospital-acquired gastroenteritis. C. difficile infections begin when its spore form germinates in the vertebrate gut upon sensing bile acids. These germinants induce a proteolytic signaling cascade controlled by three members of the subtilisin-like serine protease family, CspA, CspB, and CspC. Notably, even though CspC and CspA are both pseudoproteases, they are nevertheless required to sense germinants and activate the protease, CspB. Thus, CspC and CspA are part of a growing list of pseudoenzymes that play important roles in regulating cellular processes. However, despite their importance, the structural properties of pseudoenzymes that allow them to function as regulators remain poorly understood. Our recently determined crystal structure of CspC revealed that its degenerate site residues align closely with the catalytic triad of CspB, so in this study we tested whether the ancestral protease activity of the CspC and CspA pseudoproteases could be “resurrected.” Restoring the catalytic triad to these pseudoproteases failed to resurrect their protease activity, although the mutations differentially affected the stability and function of these pseudoproteases. Degenerate site mutations destabilized CspC and impaired spore germination without impacting CspA stability or function. Thus, our results surprisingly reveal that the presence of a catalytic triad does not necessarily predict protease activity. Since close homologs of C. difficile CspA occasionally carry an intact catalytic triad, our results imply that bioinformatics predictions of enzyme activity may overlook pseudoenzymes in some cases.


2020 ◽  
Vol 477 (8) ◽  
pp. 1459-1478
Author(s):  
M. Lauren Donnelly ◽  
Emily R. Forster ◽  
Amy E. Rohlfing ◽  
Aimee Shen

Clostridioides difficile is a spore-forming bacterial pathogen that is the leading cause of hospital-acquired gastroenteritis. C. difficile infections begin when its spore form germinates in the gut upon sensing bile acids. These germinants induce a proteolytic signaling cascade controlled by three members of the subtilisin-like serine protease family, CspA, CspB, and CspC. Notably, even though CspC and CspA are both pseudoproteases, they are nevertheless required to sense germinants and activate the protease, CspB. Thus, CspC and CspA are part of a growing list of pseudoenzymes that play important roles in regulating cellular processes. However, despite their importance, the structural properties of pseudoenzymes that allow them to function as regulators remain poorly understood. Our recently solved crystal structure of CspC revealed that its pseudoactive site residues align closely with the catalytic triad of CspB, suggesting that it might be possible to ‘resurrect' the ancestral protease activity of the CspC and CspA pseudoproteases. Here, we demonstrate that restoring the catalytic triad to these pseudoproteases fails to resurrect their protease activity. We further show that the pseudoactive site substitutions differentially affect the stability and function of the CspC and CspA pseudoproteases: the substitutions destabilized CspC and impaired spore germination without affecting CspA stability or function. Thus, our results surprisingly reveal that the presence of a catalytic triad does not necessarily predict protease activity. Since homologs of C. difficile CspA occasionally carry an intact catalytic triad, our results indicate that bioinformatic predictions of enzyme activity may underestimate pseudoenzymes in rare cases.


2020 ◽  
Vol 69 (4) ◽  
pp. 631-639
Author(s):  
Abraham Joseph Pellissery ◽  
Poonam Gopika Vinayamohan ◽  
Kumar Venkitanarayanan

Introduction. Clostridioides difficile is an enteric pathogen that causes a serious toxin-mediated colitis in humans. Bacterial exotoxins and sporulation are critical virulence components that contribute to pathogenesis, and disease transmission and relapse, respectively. Therefore, reducing toxin production and sporulation could significantly minimize C. difficile pathogenicity and disease outcome in affected individuals. Aim. This study investigated the efficacy of a natural flavone glycoside, baicalin, in reducing toxin synthesis, sporulation and spore germination in C. difficile in vitro. Methodology. Hypervirulent C. difficile isolates BAA 1870 or 1803 were cultured in brain heart infusion broth with or without the subinhibitory concentration (SIC) of baicalin, and incubated at 37 °C for 24 h under strictly anaerobic conditions. The supernatant was harvested after 24 h for determining C. difficile toxin production by ELISA. In addition, a similar experiment was performed wherein samples were harvested for assessing total viable counts, and heat-resistant spore counts at 72 h of incubation. Furthermore, C. difficile spore germination and spore outgrowth kinetics, with or without baicalin treatment, was measured in a plate reader by recording optical density at 600 nm. Finally, the effect of baicalin on C. difficile toxin, sporulation and virulence-associated genes was investigated using real-time quantitative PCR. Results. The SIC of baicalin significantly reduced toxin synthesis, sporulation and spore outgrowth when compared to control. In addition, C. difficile genes critical for pathogenesis were significantly down-regulated in the presence of baicalin. Conclusion. Our results suggest that baicalin could potentially be used to control C. difficile , and warrant future studies in vivo.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 984
Author(s):  
Suvash Chandra Ojha ◽  
Matthew Phanchana ◽  
Phurt Harnvoravongchai ◽  
Surang Chankhamhaengdecha ◽  
Sombat Singhakaew ◽  
...  

In recent decades, the incidence of Clostridioides difficile infection (CDI) has remained high in both community and health-care settings. With the increasing rate of treatment failures and its ability to form spores, an alternative treatment for CDI has become a global priority. We used the microdilution assay to determine minimal inhibitory concentrations (MICs) of vancomycin and teicoplanin against 30 distinct C. difficile strains isolated from various host origins. We also examined the effect of drugs on spore germination and outgrowth by following the development of OD600. Finally, we confirmed the spore germination and cell stages by microscopy. We showed that teicoplanin exhibited lower MICs compared to vancomycin in all tested isolates. MICs of teicoplanin ranged from 0.03–0.25 µg/mL, while vancomycin ranged from 0.5–4 µg/mL. Exposure of C. difficile spores to broth supplemented with various concentrations of antimicrobial agents did not affect the initiation of germination, but the outgrowth to vegetative cells was inhibited by all test compounds. This finding was concordant with aberrant vegetative cells after antibiotic treatment observed by light microscopy. This work highlights the efficiency of teicoplanin for treatment of C. difficile through prevention of vegetative cell outgrowth.


Sign in / Sign up

Export Citation Format

Share Document