scholarly journals Eravacycline, a novel tetracycline derivative, does not induce Clostridioides difficile infection in an in vitro human gut model

2020 ◽  
Vol 76 (1) ◽  
pp. 171-178
Author(s):  
Anthony M Buckley ◽  
James Altringham ◽  
Emma Clark ◽  
Karen Bently ◽  
William Spittal ◽  
...  

Abstract Objectives The approval of new antibiotics is essential to combat infections caused by antimicrobial-resistant pathogens; however, such agents should be tested to determine their effect on the resident microbiota and propensity to select for opportunistic pathogens, such as Clostridioides difficile. Eravacycline is a new antibiotic for the treatment of complicated intra-abdominal infections. Here, we determined the effects of eravacycline compared with moxifloxacin on the microbiota and if these were conducive to induction of C. difficile infection (CDI). Methods We seeded in vitro chemostat models, which simulate the physiological conditions of the human colon, with a human faecal slurry and instilled gut-reflective concentrations of either eravacycline or moxifloxacin. Results Eravacycline instillation was associated with decreased Bifidobacterium, Lactobacillus and Clostridium species, which recovered 1 week after exposure. However, Bacteroides spp. levels decreased to below the limit of detection and did not recover prior to the end of the experiment. Post-eravacycline, a bloom of aerobic bacterial species occurred, including Enterobacteriaceae, compared with pre-antibiotic, which remained high for the duration of the experiment. These changes in microbiota were not associated with induction of CDI, as we observed a lack of C. difficile spore germination and thus no toxin was detected. Moxifloxacin exposure sufficiently disrupted the microbiota to induce simulated CDI, where C. difficile spore germination, outgrowth and toxin production were seen. Conclusions These model data suggest that, despite the initial impact of eravacycline on the intestinal microbiota, similar to clinical trial data, this novel tetracycline has a low propensity to induce CDI.

2020 ◽  
Vol 75 (6) ◽  
pp. 1458-1465
Author(s):  
C H Chilton ◽  
G S Crowther ◽  
C Miossec ◽  
J de Gunzburg ◽  
A Andremont ◽  
...  

Abstract Background Clostridioides difficile infection (CDI) remains a high burden worldwide. DAV131A, a novel adsorbent, reduces residual gut antimicrobial levels, reducing CDI risk in animal models. Objectives We used a validated human gut model to investigate the efficacy of DAV131A in preventing moxifloxacin-induced CDI. Methods C. difficile (CD) spores were inoculated into two models populated with pooled human faeces. Moxifloxacin was instilled (43 mg/L, once daily, 7 days) alongside DAV131A (5 g in 18 mL PBS, three times daily, 14 days, Model A), or PBS (18 mL, three times daily, 14 days, Model B). Selected gut microbiota populations, CD total counts, spore counts, cytotoxin titre and antimicrobial concentrations (HPLC) were monitored daily. We monitored for reduced susceptibility of CD to moxifloxacin. Growth of CD in faecal filtrate and medium in the presence/absence of DAV131A, or in medium pre-treated with DAV131A, was also investigated. Results DAV131A instillation reduced active moxifloxacin levels to below the limit of detection (50 ng/mL), and prevented microbiota disruption, excepting Bacteroides fragilis group populations, which declined by ∼3 log10 cfu/mL. DAV131A delayed onset of simulated CDI by ∼2 weeks, but did not prevent CD germination and toxin production. DAV131A prevented emergence of reduced susceptibility of CD to moxifloxacin. In batch culture, DAV131A had minor effects on CD vegetative growth, but significantly reduced toxin/spores (P < 0.005). Conclusions DAV131A reduced moxifloxacin-induced microbiota disruption and emergence of antibiotic-resistant CD. Delayed onset of CD germination and toxin production indicates further investigations are warranted to understand the clinical benefits of DAV131A in CDI prevention.


2020 ◽  
Vol 69 (4) ◽  
pp. 631-639
Author(s):  
Abraham Joseph Pellissery ◽  
Poonam Gopika Vinayamohan ◽  
Kumar Venkitanarayanan

Introduction. Clostridioides difficile is an enteric pathogen that causes a serious toxin-mediated colitis in humans. Bacterial exotoxins and sporulation are critical virulence components that contribute to pathogenesis, and disease transmission and relapse, respectively. Therefore, reducing toxin production and sporulation could significantly minimize C. difficile pathogenicity and disease outcome in affected individuals. Aim. This study investigated the efficacy of a natural flavone glycoside, baicalin, in reducing toxin synthesis, sporulation and spore germination in C. difficile in vitro. Methodology. Hypervirulent C. difficile isolates BAA 1870 or 1803 were cultured in brain heart infusion broth with or without the subinhibitory concentration (SIC) of baicalin, and incubated at 37 °C for 24 h under strictly anaerobic conditions. The supernatant was harvested after 24 h for determining C. difficile toxin production by ELISA. In addition, a similar experiment was performed wherein samples were harvested for assessing total viable counts, and heat-resistant spore counts at 72 h of incubation. Furthermore, C. difficile spore germination and spore outgrowth kinetics, with or without baicalin treatment, was measured in a plate reader by recording optical density at 600 nm. Finally, the effect of baicalin on C. difficile toxin, sporulation and virulence-associated genes was investigated using real-time quantitative PCR. Results. The SIC of baicalin significantly reduced toxin synthesis, sporulation and spore outgrowth when compared to control. In addition, C. difficile genes critical for pathogenesis were significantly down-regulated in the presence of baicalin. Conclusion. Our results suggest that baicalin could potentially be used to control C. difficile , and warrant future studies in vivo.


Author(s):  
Jacqueline R. Phan ◽  
Dung M. Do ◽  
Minh Chau Truong ◽  
Connie Ngo ◽  
Julian H. Phan ◽  
...  

Clostridioides difficile infection (CDI) is the major identifiable cause of antibiotic-associated diarrhea. The emergence of hypervirulent C. difficile strains has led to increases in both hospital- and community-acquired CDI. Furthermore, CDI relapse from hypervirulent strains can reach up to 25%. Thus, standard treatments are rendered less effective, making new methods of prevention and treatment more critical. Previously, the bile salt analog CamSA was shown to inhibit spore germination in vitro and protect mice and hamsters from C. difficile strain 630. Here, we show that CamSA was less active at preventing spore germination of other C. difficile ribotypes, including the hypervirulent strain R20291. Strain-specific in vitro germination activity of CamSA correlated with its ability to prevent CDI in mice. Additional bile salt analogs were screened for in vitro germination inhibition activity against strain R20291, and the most active compounds were tested against other strains. An aniline-substituted bile salt analog, (CaPA), was found to be a better anti-germinant than CamSA against eight different C. difficile strains. In addition, CaPA was capable of reducing, delaying, or preventing murine CDI signs in all strains tested. CaPA-treated mice showed no obvious toxicity and showed minor effects on their gut microbiome. CaPA’s efficacy was further confirmed by its ability to prevent CDI in hamsters infected with strain 630. These data suggest that C. difficile spores respond to germination inhibitors in a strain-dependent manner. However, careful screening can identify anti-germinants with broad CDI prophylaxis activity.


Author(s):  
Noah Budi ◽  
Jared J. Godfrey ◽  
Nasia Safdar ◽  
Sanjay K. Shukla ◽  
Warren E. Rose

Clostridioides difficile (C. difficile) infections (CDI) are commonly treated with antibiotics that do not impact the dormant spore form of the pathogen. CDI-directed antibiotics, such as vancomycin and metronidazole, can destroy the vegetative form of C. difficile and protective microbiota. After treatment, spores can germinate into vegetative cells causing clinical disease relapse and further spore shedding. This in vitro study compares the combination of germinants with vancomycin or omadacycline to antibiotics alone in eradicating C. difficile spores and vegetative cells. Among the four strains in this study, omadacycline minimum inhibitory concentrations (0.031-0.125 mg/L) were lower than vancomycin (1-4 mg/L). Omadacycline nor vancomycin in media alone reduced spore counts. In three of the four strains, including the epidemic ribotype 027, spore eradication with germinants was 94.8-97.4% with vancomycin and 99.4-99.8% with omadacycline (p<0.005). In ribotype 012, either antibiotic combined with germinants resulted in 100% spore eradication at 24 hours. The addition of germinants with either antibiotic did not result in significant toxin A or B production, which were below the limit of detection (<1.25 ng/mL) by 48 hours. Limiting the number of spores present in patient GI tracts at the end of therapy may be effective at preventing recurrent CDI and limiting spore shedding in the healthcare environment. These results with germinants warrant safety and efficacy evaluations in animal models.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S312-S313 ◽  
Author(s):  
Eugenie Basseres ◽  
Julie Miranda ◽  
Anne J Gonzales-Luna ◽  
Travis J Carlson ◽  
Tasnuva Rashid ◽  
...  

Abstract Background Eravacycline is a novel, tetracycline class antibacterial indicated for the treatment of complicated intra-abdominal infections in adults. In clinical trials, patients given eravacycline had a low likelihood of developing Clostridioides difficile infection (CDI). We hypothesized this was likely due, in part, to the in vitro susceptibility of eravacycline to C. difficile. The purpose of this study was to test the in vitro susceptibility of eravacycline vs. comparators on contemporary clinical isolates representing common ribotypes, including isolates with decreased susceptibility to metronidazole and vancomycin. Methods Two hundred and thirty-four isolates from our biobank were selected from the six most common ribotypes (F001, F002, F014-020, F027, F106, and F255). Minimum inhibitory concentrations (MIC) at 24 hours were measured according to CLSI guidelines for eravacycline, vancomycin, metronidazole and fidaxomicin. MICs results were tabulated and are presented as the geometric mean by ribotype. Results Geometric MIC results are shown in Table 1. Eravacycline was the most potent antimicrobial tested followed by fidaxomicin, metronidazole, and vancomycin. Results were consistent amongst all ribotypes, including isolates with reduced susceptibility to vancomycin and metronidazole. Conclusion Eravacycline displayed potent in vitro activity against a large collection of clinical C. difficile isolates. These data provide insight into why patients given eravacycline had a low likelihood of developing CDI and support further research to better understand the use of eravacycline to prevent or potentially treat patients with CDI. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 65 (1) ◽  
pp. e01401-20
Author(s):  
Hannah C. Harris ◽  
Emma L. Best ◽  
Charmaine Normington ◽  
Nathalie Saint-Lu ◽  
Frédérique Sablier-Gallis ◽  
...  

ABSTRACTA healthy, intact gut microbiota is often resistant to colonization by gastrointestinal pathogens. During periods of dysbiosis, however, organisms such as Clostridioides difficile can thrive. We describe an optimized in vitro colonization resistance assay for C. difficile in stool (CRACS) and demonstrate the utility of this assay by assessing changes in colonization resistance following antibiotic exposure. Fecal samples were obtained from healthy volunteers (n = 6) and from healthy subjects receiving 5 days of moxifloxacin (n = 11) or no antibiotics (n = 10). Samples were separated and either not manipulated (raw) or sterilized (autoclaved or filtered) prior to inoculation with C. difficile ribotype 027 spores and anaerobic incubation for 72 h. Different methods of storing fecal samples were also investigated in order to optimize the CRACS. In healthy, raw fecal samples, incubation with spores did not lead to increased C. difficile total viable counts (TVCs) or cytotoxin detection. In contrast, increased C. difficile TVCs and cytotoxin detection occurred in sterilized healthy fecal samples or those from antibiotic-treated individuals. The CRACS was functional with fecal samples stored at either 4°C or −80°C but not with those stored with glycerol (12% or 30% [vol/vol]). Our data show that the CRACS successfully models in vitro the loss of colonization resistance and subsequent C. difficile proliferation and toxin production. The CRACS could be used as a proxy for C. difficile infection in clinical studies or to determine if an individual is at risk of developing C. difficile infection or other potential infections occurring due to a loss of colonization resistance.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Nader S. Abutaleb ◽  
Mohamed N. Seleem

ABSTRACT Clostridioides difficile, the leading cause of nosocomial infections, is an urgent health threat worldwide. The increased incidence and severity of disease, the high recurrence rates, and the dearth of effective anticlostridial drugs have created an urgent need for new therapeutic agents. In an effort to discover new drugs for the treatment of Clostridioides difficile infections (CDIs), we investigated a panel of FDA-approved antiparasitic drugs against C. difficile and identified diiodohydroxyquinoline (DIHQ), an FDA-approved oral antiamoebic drug. DIHQ exhibited potent activity against 39 C. difficile isolates, inhibiting growth of 50% and 90% of these isolates at concentrations of 0.5 μg/ml and 2 μg/ml, respectively. In a time-kill assay, DIHQ was superior to vancomycin and metronidazole, reducing a high bacterial inoculum by 3 log10 within 6 h. Furthermore, DIHQ reacted synergistically with vancomycin and metronidazole against C. difficile in vitro. Moreover, at subinhibitory concentrations, DIHQ was superior to vancomycin and metronidazole in inhibiting two key virulence factors of C. difficile, toxin production and spore formation. Additionally, DIHQ did not inhibit the growth of key species that compose the host intestinal microbiota, such as Bacteroides, Bifidobacterium, and Lactobacillus spp. Collectively, our results indicate that DIHQ is a promising anticlostridial drug that warrants further investigation as a new therapeutic for CDIs.


2019 ◽  
Vol 15 (7) ◽  
pp. 1598-1608
Author(s):  
Hongna Liu ◽  
Kathryn Heflin ◽  
Jian Han ◽  
Matt Conover ◽  
Leslie Wagner ◽  
...  

We utilized Amplicon-Rescue Multiplex PCR (ARM-PCR) and microarray hybridization to develop and validate the iC-GPC Assay, a multiplexed, in vitro diagnostic test that identifies five of the most common gram positive bacteria and three clinically relevant resistance markers associated with bloodstream infections (BSI). The iC-GPC Assay is designed for use with the iC-System™, which automates sample preparation, ARM-PCR, and microarray detection within a closed cassette. Herein, we determined the limit of detection for each of the iC-GPC Assay targets to be between 3.0 × 105–1.7 × 107 CFU/mL, well below clinically relevant bacterial levels for positive blood cultures. Additionally, we tested 106 strains for assay inclusivity and observed a target performance of 99.4%. 95 of 96 non-target organisms tested negative for cross-reactivity, thereby assuring a high level of assay specificity. Overall performance above 99% was observed for iC-GPC Assay reproducibility studies across multiple sites, operators and cassette lots. In conclusion, the iC-GPC Assay is capable of accurately and rapidly identifying bacterial species and resistance determinants present in blood cultures containing gram positive bacteria. Utilizing molecular diagnostics like the iC-GPC Assay will decrease time to treatment, healthcare costs, and BSI-related mortality.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Jemila C. Kester ◽  
Douglas K. Brubaker ◽  
Jason Velazquez ◽  
Charles Wright ◽  
Douglas A. Lauffenburger ◽  
...  

ABSTRACT A clinically relevant risk factor for Clostridioides difficile-associated disease (CDAD) is recent antibiotic treatment. Although broad-spectrum antibiotics have been shown to disrupt the structure of the gut microbiota, some antibiotics appear to increase CDAD risk without being highly active against intestinal anaerobes, suggesting direct nonantimicrobial effects. We examined cell biological effects of antibiotic exposure that may be involved in bacterial pathogenesis using an in vitro germfree human colon epithelial culture model. We found a marked loss of mucosal barrier and immune function with exposure to the CDAD-associated antibiotics clindamycin and ciprofloxacin, distinct from the results of pretreatment with an antibiotic unassociated with CDAD, tigecycline, which did not reduce innate immune or mucosal barrier functions. Importantly, pretreatment with CDAD-associated antibiotics sensitized mucosal barriers to C. difficile toxin activity in primary cell-derived enteroid monolayers. These data implicate commensal-independent gut mucosal barrier changes in the increased risk of CDAD with specific antibiotics and warrant further studies in in vivo systems. We anticipate this work to suggest potential avenues of research for host-directed treatment and preventive therapies for CDAD.


Sign in / Sign up

Export Citation Format

Share Document