An aniline-substituted bile salt analog protects both mice and hamsters from multiple Clostridioides difficile strains

Author(s):  
Jacqueline R. Phan ◽  
Dung M. Do ◽  
Minh Chau Truong ◽  
Connie Ngo ◽  
Julian H. Phan ◽  
...  

Clostridioides difficile infection (CDI) is the major identifiable cause of antibiotic-associated diarrhea. The emergence of hypervirulent C. difficile strains has led to increases in both hospital- and community-acquired CDI. Furthermore, CDI relapse from hypervirulent strains can reach up to 25%. Thus, standard treatments are rendered less effective, making new methods of prevention and treatment more critical. Previously, the bile salt analog CamSA was shown to inhibit spore germination in vitro and protect mice and hamsters from C. difficile strain 630. Here, we show that CamSA was less active at preventing spore germination of other C. difficile ribotypes, including the hypervirulent strain R20291. Strain-specific in vitro germination activity of CamSA correlated with its ability to prevent CDI in mice. Additional bile salt analogs were screened for in vitro germination inhibition activity against strain R20291, and the most active compounds were tested against other strains. An aniline-substituted bile salt analog, (CaPA), was found to be a better anti-germinant than CamSA against eight different C. difficile strains. In addition, CaPA was capable of reducing, delaying, or preventing murine CDI signs in all strains tested. CaPA-treated mice showed no obvious toxicity and showed minor effects on their gut microbiome. CaPA’s efficacy was further confirmed by its ability to prevent CDI in hamsters infected with strain 630. These data suggest that C. difficile spores respond to germination inhibitors in a strain-dependent manner. However, careful screening can identify anti-germinants with broad CDI prophylaxis activity.

2020 ◽  
Author(s):  
A.D. Reed ◽  
M.A. Nethery ◽  
A. Stewart ◽  
R. Barrangou ◽  
C.M. Theriot

AbstractClostridioides difficile is one of the leading causes of antibiotic-associated diarrhea. Gut microbiota-derived secondary bile acids and commensal Clostridia that encode the bile acid inducible (bai) operon are associated with protection from C. difficile infection (CDI), although the mechanism is not known. In this study we hypothesized that commensal Clostridia are important for providing colonization resistance against C. difficile due to their ability to produce secondary bile acids, as well as potentially competing against C. difficile for similar nutrients. To test this hypothesis, we examined the ability of four commensal Clostridia encoding the bai operon (C. scindens VPI 12708, C. scindens ATCC 35704, C. hiranonis, and C. hylemonae) to convert CA to DCA in vitro, and if the amount of DCA produced was sufficient to inhibit growth of a clinically relevant C. difficile strain. We also investigated the competitive relationship between these commensals and C. difficile using an in vitro co-culture system. We found that inhibition of C. difficile growth by commensal Clostridia supplemented with CA was strain-dependent, correlated with the production of ∼2 mM DCA, and increased expression of bai operon genes. We also found that C. difficile was able to outcompete all four commensal Clostridia in an in vitro co-culture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics. Future studies dissecting the regulation of the bai operon in vitro and in vivo and how this affects CDI will be important.ImportanceCommensal Clostridia encoding the bai operon such as C. scindens have been associated with protection against CDI, however the mechanism for this protection is unknown. Herein, we show four commensal Clostridia that encode the bai operon effect C. difficile growth in a strain-dependent manner, with and without the addition of cholate. Inhibition of C. difficile by commensals correlated with the efficient conversion of cholate to deoxycholate, a secondary bile acid that inhibits C. difficile germination, growth, and toxin production. Competition studies also revealed that C. difficile was able to outcompete the commensals in an in vitro co-culture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics.


2020 ◽  
Vol 202 (11) ◽  
Author(s):  
A. D. Reed ◽  
M. A. Nethery ◽  
A. Stewart ◽  
R. Barrangou ◽  
C. M. Theriot

ABSTRACT Clostridioides difficile is one of the leading causes of antibiotic-associated diarrhea. Gut microbiota-derived secondary bile acids and commensal Clostridia that carry the bile acid-inducible (bai) operon are associated with protection from C. difficile infection (CDI), although the mechanism is not known. In this study, we hypothesized that commensal Clostridia are important for providing colonization resistance against C. difficile due to their ability to produce secondary bile acids, as well as potentially competing against C. difficile for similar nutrients. To test this hypothesis, we examined the abilities of four commensal Clostridia carrying the bai operon (Clostridium scindens VPI 12708, C. scindens ATCC 35704, Clostridium hiranonis, and Clostridium hylemonae) to convert cholate (CA) to deoxycholate (DCA) in vitro, and we determined whether the amount of DCA produced was sufficient to inhibit the growth of a clinically relevant C. difficile strain. We also investigated the competitive relationships between these commensals and C. difficile using an in vitro coculture system. We found that inhibition of C. difficile growth by commensal Clostridia supplemented with CA was strain dependent, correlated with the production of ∼2 mM DCA, and increased the expression of bai operon genes. We also found that C. difficile was able to outcompete all four commensal Clostridia in an in vitro coculture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics. Future studies dissecting the regulation of the bai operon in vitro and in vivo and how this affects CDI will be important. IMPORTANCE Commensal Clostridia carrying the bai operon, such as C. scindens, have been associated with protection against CDI; however, the mechanism for this protection is unknown. Herein, we show four commensal Clostridia that carry the bai operon and affect C. difficile growth in a strain-dependent manner, with and without the addition of cholate. Inhibition of C. difficile by commensals correlated with the efficient conversion of cholate to deoxycholate, a secondary bile acid that inhibits C. difficile germination, growth, and toxin production. Competition studies also revealed that C. difficile was able to outcompete the commensals in an in vitro coculture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics.


2020 ◽  
Vol 76 (1) ◽  
pp. 171-178
Author(s):  
Anthony M Buckley ◽  
James Altringham ◽  
Emma Clark ◽  
Karen Bently ◽  
William Spittal ◽  
...  

Abstract Objectives The approval of new antibiotics is essential to combat infections caused by antimicrobial-resistant pathogens; however, such agents should be tested to determine their effect on the resident microbiota and propensity to select for opportunistic pathogens, such as Clostridioides difficile. Eravacycline is a new antibiotic for the treatment of complicated intra-abdominal infections. Here, we determined the effects of eravacycline compared with moxifloxacin on the microbiota and if these were conducive to induction of C. difficile infection (CDI). Methods We seeded in vitro chemostat models, which simulate the physiological conditions of the human colon, with a human faecal slurry and instilled gut-reflective concentrations of either eravacycline or moxifloxacin. Results Eravacycline instillation was associated with decreased Bifidobacterium, Lactobacillus and Clostridium species, which recovered 1 week after exposure. However, Bacteroides spp. levels decreased to below the limit of detection and did not recover prior to the end of the experiment. Post-eravacycline, a bloom of aerobic bacterial species occurred, including Enterobacteriaceae, compared with pre-antibiotic, which remained high for the duration of the experiment. These changes in microbiota were not associated with induction of CDI, as we observed a lack of C. difficile spore germination and thus no toxin was detected. Moxifloxacin exposure sufficiently disrupted the microbiota to induce simulated CDI, where C. difficile spore germination, outgrowth and toxin production were seen. Conclusions These model data suggest that, despite the initial impact of eravacycline on the intestinal microbiota, similar to clinical trial data, this novel tetracycline has a low propensity to induce CDI.


mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Oscar R. Diaz ◽  
Cameron V. Sayer ◽  
David L. Popham ◽  
Aimee Shen

ABSTRACTClostridium difficile, also known asClostridioides difficile, is a Gram-positive, spore-forming bacterium that is a leading cause of antibiotic-associated diarrhea.C. difficileinfections begin when its metabolically dormant spores germinate to form toxin-producing vegetative cells. Successful spore germination depends on the degradation of the cortex, a thick layer of modified peptidoglycan that maintains dormancy. Cortex degradation is mediated by the SleC cortex lytic enzyme, which is thought to recognize the cortex-specific modification muramic-δ-lactam.C. difficilecortex degradation also depends on thePeptostreptococcaceae-specific lipoprotein GerS for unknown reasons. In this study, we tested whether GerS regulates production of muramic-δ-lactam and thus controls the ability of SleC to recognize its cortex substrate. By comparing the muropeptide profiles of ΔgerSspores to those of spores lacking either CwlD or PdaA, both of which mediate cortex modification inBacillus subtilis, we determined thatC. difficileGerS, CwlD, and PdaA are all required to generate muramic-δ-lactam. Both GerS and CwlD were needed to cleave the peptide side chains from N-acetylmuramic acid, suggesting that these two factors act in concert. Consistent with this hypothesis, biochemical analyses revealed that GerS and CwlD directly interact and that CwlD modulates GerS incorporation into mature spores. Since ΔgerS, ΔcwlD, and ΔpdaAspores exhibited equivalent germination defects, our results indicate thatC. difficilespore germination depends on cortex-specific modifications, reveal GerS as a novel regulator of these processes, and highlight additional differences in the regulation of spore germination inC. difficilerelative toB. subtilisand other spore-forming organisms.IMPORTANCEThe Gram-positive, spore-forming bacteriumClostridium difficileis a leading cause of antibiotic-associated diarrhea. BecauseC. difficileis an obligate anaerobe, its aerotolerant spores are essential for transmitting disease, and their germination into toxin-producing cells is necessary for causing disease. Spore germination requires the removal of the cortex, a thick layer of modified peptidoglycan that maintains spore dormancy. Cortex degradation is mediated by the SleC hydrolase, which is thought to recognize cortex-specific modifications. Cortex degradation also requires the GerS lipoprotein for unknown reasons. In our study, we tested whether GerS is required to generate cortex-specific modifications by comparing the cortex composition of ΔgerSspores to the cortex composition of spores lacking two putative cortex-modifying enzymes, CwlD and PdaA. These analyses revealed that GerS, CwlD, and PdaA are all required to generate cortex-specific modifications. Since loss of these modifications in ΔgerS, ΔcwlD, and ΔpdaAmutants resulted in spore germination and heat resistance defects, the SleC cortex lytic enzyme depends on cortex-specific modifications to efficiently degrade this protective layer. Our results further indicate that GerS and CwlD are mutually required for removing peptide chains from spore peptidoglycan and revealed a novel interaction between these proteins. Thus, our findings provide new mechanistic insight intoC. difficilespore germination.


2004 ◽  
Vol 70 (10) ◽  
pp. 6306-6308 ◽  
Author(s):  
S. Gratz ◽  
H. Mykkänen ◽  
A. C. Ouwehand ◽  
R. Juvonen ◽  
S. Salminen ◽  
...  

ABSTRACT Several probiotics are known to bind aflatoxin B1 (AFB1) to their surfaces and to adhere to intestinal mucus. In this study, preincubation of two probiotic preparations with either AFB1 or mucus reduced the subsequent surface binding of mucus and AFB1, respectively, in a strain-dependent manner.


2020 ◽  
Vol 69 (4) ◽  
pp. 631-639
Author(s):  
Abraham Joseph Pellissery ◽  
Poonam Gopika Vinayamohan ◽  
Kumar Venkitanarayanan

Introduction. Clostridioides difficile is an enteric pathogen that causes a serious toxin-mediated colitis in humans. Bacterial exotoxins and sporulation are critical virulence components that contribute to pathogenesis, and disease transmission and relapse, respectively. Therefore, reducing toxin production and sporulation could significantly minimize C. difficile pathogenicity and disease outcome in affected individuals. Aim. This study investigated the efficacy of a natural flavone glycoside, baicalin, in reducing toxin synthesis, sporulation and spore germination in C. difficile in vitro. Methodology. Hypervirulent C. difficile isolates BAA 1870 or 1803 were cultured in brain heart infusion broth with or without the subinhibitory concentration (SIC) of baicalin, and incubated at 37 °C for 24 h under strictly anaerobic conditions. The supernatant was harvested after 24 h for determining C. difficile toxin production by ELISA. In addition, a similar experiment was performed wherein samples were harvested for assessing total viable counts, and heat-resistant spore counts at 72 h of incubation. Furthermore, C. difficile spore germination and spore outgrowth kinetics, with or without baicalin treatment, was measured in a plate reader by recording optical density at 600 nm. Finally, the effect of baicalin on C. difficile toxin, sporulation and virulence-associated genes was investigated using real-time quantitative PCR. Results. The SIC of baicalin significantly reduced toxin synthesis, sporulation and spore outgrowth when compared to control. In addition, C. difficile genes critical for pathogenesis were significantly down-regulated in the presence of baicalin. Conclusion. Our results suggest that baicalin could potentially be used to control C. difficile , and warrant future studies in vivo.


2014 ◽  
Vol 58 (11) ◽  
pp. 6962-6965 ◽  
Author(s):  
Kriti Arora ◽  
Bernardo Ochoa-Montaño ◽  
Patricia S. Tsang ◽  
Tom L. Blundell ◽  
Stephanie S. Dawes ◽  
...  

ABSTRACTWe report here a series of five chemically diverse scaffolds that havein vitroactivities on replicating and hypoxic nonreplicating bacilli by targeting the respiratorybc1complex inMycobacterium tuberculosisin a strain-dependent manner. Deletion of the cytochromebdoxidase generated a hypersusceptible mutant in which resistance was acquired by a mutation inqcrB. These results highlight the promiscuity of thebc1complex and the risk of targeting energy metabolism with new drugs.


Sign in / Sign up

Export Citation Format

Share Document