A recombinant vesicular stomatitis virus encoding CCR5-tropic HIV-1 receptors targets HIV-1-infected cells and controls HIV-1 infection

2017 ◽  
Vol 19 (4-5) ◽  
pp. 277-287 ◽  
Author(s):  
Kazu Okuma ◽  
Koji Fukagawa ◽  
Takuya Kohma ◽  
Youichi Takahama ◽  
Yukio Hamaguchi ◽  
...  
2006 ◽  
Vol 28 (3) ◽  
pp. 239-253 ◽  
Author(s):  
David K. Clarke ◽  
David Cooper ◽  
Michael A. Egan ◽  
R. Michael Hendry ◽  
Christopher L. Parks ◽  
...  

2002 ◽  
Vol 76 (16) ◽  
pp. 8011-8018 ◽  
Author(s):  
Himangi R. Jayakar ◽  
Michael A. Whitt

ABSTRACT The matrix (M) protein of vesicular stomatitis virus (VSV) is a multifunctional protein that is responsible for condensation of the ribonucleocapsid core during virus assembly and also plays a critical role in virus budding. The M protein is also responsible for most of the cytopathic effects (CPE) observed in infected cells. VSV CPE include inhibition of host gene expression, disablement of nucleocytoplasmic transport, and disruption of the host cytoskeleton, which results in rounding of infected cells. In this report, we show that the VSV M gene codes for two additional polypeptides, which we have named M2 and M3. These proteins are synthesized from downstream methionines in the same open reading frame as the M protein (which we refer to here as M1) and lack the first 32 (M2) or 50 (M3) amino acids of M1. Infection of cells with a recombinant virus that does not express M2 and M3 (M33,51A) resulted in a delay in cell rounding, but virus yield was not affected. Transient expression of M2 and M3 alone caused cell rounding similar to that with the full-length M1 protein, suggesting that the cell-rounding function of the M protein does not require the N-terminal 50 amino acids. To determine if M2 and M3 were sufficient for VSV-mediated CPE, both M2 and M3 were expressed from a separate cistron in a VSV mutant background that readily establishes persistent infections and that normally lacks CPE. Infection of cells with the recombinant virus that expressed M2 and M3 resulted in cell rounding indistinguishable from that with the wild-type recombinant virus. These results suggest that M2 and M3 are important for cell rounding and may play an important role in viral cytopathogenesis. To our knowledge, this is first report of the multiple coding capacities of a rhabdovirus matrix gene.


Vaccine ◽  
2009 ◽  
Vol 27 (22) ◽  
pp. 2930-2939 ◽  
Author(s):  
J. Erik Johnson ◽  
John W. Coleman ◽  
Narender K. Kalyan ◽  
Priscilla Calderon ◽  
Kevin J. Wright ◽  
...  

2009 ◽  
Vol 83 (6) ◽  
pp. 2611-2622 ◽  
Author(s):  
Subash C. Das ◽  
Debasis Panda ◽  
Debasis Nayak ◽  
Asit K. Pattnaik

ABSTRACT A recombinant vesicular stomatitis virus (VSV-PeGFP-M-MmRFP) encoding enhanced green fluorescent protein fused in frame with P (PeGFP) in place of P and a fusion matrix protein (monomeric red fluorescent protein fused in frame at the carboxy terminus of M [MmRFP]) at the G-L gene junction, in addition to wild-type (wt) M protein in its normal location, was recovered, but the MmRFP was not incorporated into the virions. Subsequently, we generated recombinant viruses (VSV-PeGFP-ΔM-Mtc and VSV-ΔM-Mtc) encoding M protein with a carboxy-terminal tetracysteine tag (Mtc) in place of the M protein. These recombinant viruses incorporated Mtc at levels similar to M in wt VSV, demonstrating recovery of infectious rhabdoviruses encoding and incorporating a tagged M protein. Virions released from cells infected with VSV-PeGFP-ΔM-Mtc and labeled with the biarsenical red dye (ReAsH) were dually fluorescent, fluorescing green due to incorporation of PeGFP in the nucleocapsids and red due to incorporation of ReAsH-labeled Mtc in the viral envelope. Transport and subsequent association of M protein with the plasma membrane were shown to be independent of microtubules. Sequential labeling of VSV-ΔM-Mtc-infected cells with the biarsenical dyes ReAsH and FlAsH (green) revealed that newly synthesized M protein reaches the plasma membrane in less than 30 min and continues to accumulate there for up to 2 1/2 hours. Using dually fluorescent VSV, we determined that following adsorption at the plasma membrane, the time taken by one-half of the virus particles to enter cells and to uncoat their nucleocapsids in the cytoplasm is approximately 28 min.


1982 ◽  
Vol 2 (1) ◽  
pp. 66-75
Author(s):  
S Gillies ◽  
V Stollar

The relationship between the development of cytopathic effect (CPE) and the inhibition of host macromolecular synthesis was examined in a CPE-susceptible cloned line of Aedes albopictus cells after infection with vesicular stomatitis virus. To induce rapid and maximal CPE, two conditions were required: (i) presence of serum in the medium and (ii) incubation at 34 degrees C rather than at 28 degrees C. In the absence of serum, incubation of infected cultures at 34 degrees C resulted in a significant increase in viral protein and RNA synthesis compared with that observed at 28 degrees C. However, when serum was present in the medium, by 6 h after infection protein synthesis (both host and viral) was markedly inhibited when infected cells were maintained at 34 degrees C. RNA synthesis (host and viral) was also inhibited in vesicular stomatitis virus-infected cells maintained at 34 degrees C with serum, but somewhat more slowly than protein synthesis. Examination of polysome patterns indicated that when infected cultures were maintained under conditions which predispose to CPE, more than half of the ribosomes existed as monosomes, suggesting that protein synthesis was being inhibited at the level of initiation. In addition, the phosphorylation of one (or two) polysome-associated proteins was reduced when protein synthesis was inhibited. Our findings indicate a strong correlation between virus-induced CPE in the LT-C7 clone of A. albopictus cells and the inhibition of protein synthesis. Although the mechanism of the serum effect is not understood, incubation at 34 degrees C probably predisposes to CPE and inhibition of protein synthesis by increasing the amount of viral gene products made.


2015 ◽  
Vol 89 (21) ◽  
pp. 11019-11029 ◽  
Author(s):  
Frauke Beilstein ◽  
Linda Obiang ◽  
Hélène Raux ◽  
Yves Gaudin

ABSTRACTThe matrix protein (M) of vesicular stomatitis virus (VSV) is involved in virus assembly, budding, gene regulation, and cellular pathogenesis. Using a yeast two-hybrid system, the M globular domain was shown to interact with LMP2, a catalytic subunit of the immunoproteasome (which replaces the standard proteasome catalytic subunit PSMB6). The interaction was validated by coimmunoprecipitation of M and LMP2 in VSV-infected cells. The sites of interaction were characterized. A single mutation of M (I96A) which significantly impairs the interaction between M and LMP2 was identified. We also show that M preferentially binds to the inactive precursor of LMP2 (bearing an N-terminal propeptide which is cleaved upon LMP2 maturation). Furthermore, taking advantage of a sequence alignment between LMP2 and its proteasome homolog, PSMB6 (which does not bind to M), we identified a mutation (L45R) in the S1 pocket where the protein substrate binds prior to cleavage and a second one (D17A) of a conserved residue essential for the catalytic activity, resulting in a reduction of the level of binding to M. The combination of both mutations abolishes the interaction. Taken together, our data indicate that M binds to LMP2 before its incorporation into the immunoproteasome. As the immunoproteasome promotes the generation of major histocompatibility complex (MHC) class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells, we suggest that M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system.IMPORTANCEThe immunoproteasome promotes the generation of MHC class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells. Here, we report on the association of vesicular stomatitis virus (VSV) matrix protein (M) with LMP2, one of the immunoproteasome-specific catalytic subunits. M preferentially binds to the LMP2 inactive precursor. The M-binding site on LMP2 is facing inwards in the immunoproteasome and is therefore not accessible to M after its assembly. Hence, M binds to LMP2 before its incorporation into the immunoproteasome. We suggest that VSV M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system. Modulating this M-induced immunoproteasome impairment might be relevant in order to optimize VSV for oncolytic virotherapy.


Sign in / Sign up

Export Citation Format

Share Document