Differences in invasion and translocation of Burkholderia cepacia complex species in polarised lung epithelial cells in vitro

2006 ◽  
Vol 41 (4-5) ◽  
pp. 183-192 ◽  
Author(s):  
Caroline Duff ◽  
Philip G. Murphy ◽  
Máire Callaghan ◽  
Siobhán McClean
2016 ◽  
Vol 84 (5) ◽  
pp. 1424-1437 ◽  
Author(s):  
Siobhán McClean ◽  
Marc E. Healy ◽  
Cassandra Collins ◽  
Stephen Carberry ◽  
Luke O'Shaughnessy ◽  
...  

Members of theBurkholderia cepaciacomplex (Bcc) cause chronic opportunistic lung infections in people with cystic fibrosis (CF), resulting in a gradual lung function decline and, ultimately, patient death. The Bcc is a complex of 20 species and is rarely eradicated once a patient is colonized; therefore, vaccination may represent a better therapeutic option. We developed a new proteomics approach to identify bacterial proteins that are involved in the attachment of Bcc bacteria to lung epithelial cells. Fourteen proteins were reproducibly identified by two-dimensional gel electrophoresis from four Bcc strains representative of two Bcc species:Burkholderia cenocepacia, the most virulent, andB. multivorans, the most frequently acquired. Seven proteins were identified in both species, but only two were common to all four strains, linocin and OmpW. Both proteins were selected based on previously reported data on these proteins in other species.Escherichia colistrains expressing recombinant linocin and OmpW showed enhanced attachment (4.2- and 3.9-fold) to lung cells compared to the control, confirming that both proteins are involved in host cell attachment. Immunoproteomic analysis using serum from Bcc-colonized CF patients confirmed that both proteins elicit potent humoral responsesin vivo. Mice immunized with either recombinant linocin or OmpW were protected fromB. cenocepaciaandB. multivoranschallenge. Both antigens induced potent antigen-specific antibody responses and stimulated strong cytokine responses. In conclusion, our approach identified adhesins that induced excellent protection against two Bcc species and are promising vaccine candidates for a multisubunit vaccine. Furthermore, this study highlights the potential of our proteomics approach to identify potent antigens against other difficult pathogens.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1788
Author(s):  
António M. M. Seixas ◽  
Sílvia A. Sousa ◽  
Joana R. Feliciano ◽  
Sara C. Gomes ◽  
Mirela R. Ferreira ◽  
...  

Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain a life threat to cystic fibrosis (CF) patients, due to the faster lung function decline and the absence of effective eradication strategies. Immunotherapies are regarded as an attractive alternative to control and reduce the damages caused by these infections. In this work, we report the cloning and functional characterization of the OmpA-like BCAL2645 protein, previously identified and found to be immunoreactive against sera from CF patients with a record of Bcc infections. The BCAL2645 protein is shown to play a role in biofilm formation, adherence to mucins and invasion of human lung epithelial cells. The expression of the BCAL2645 protein was found to be increased in culture medium, mimicking the lungs of CF patients and microaerophilic conditions characteristic of the CF lung. Moreover, a polyclonal antibody raised against BCAL2645 was found to inhibit, by about 75 and 85%, the ability of B. cenocepacia K56-2 to bind and invade in vitro CFBE41o- human bronchial epithelial cells. These results highlight the potential of anti-BCAL2645 antibodies for the development of passive immunization therapies to protect CF patients against Bcc infections.


2009 ◽  
Vol 58 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Siobhán McClean ◽  
Máire Callaghan

Burkholderia cepacia complex (Bcc) is an important and virulent pathogen in cystic fibrosis patients. The interactions between this pathogen and the host lung epithelium are being widely investigated but remain to be elucidated. The complex is very versatile and its interactions with the lung epithelial cells are many and varied. The first steps in the interaction are penetration of the mucosal blanket and subsequent adherence to the epithelial cell surface. A range of epithelial receptors have been reported to bind to Bcc. The next step in pathogenesis is the invasion of the lung epithelial cell and also translocation across the epithelium to the serosal side. Furthermore, pathogenesis is mediated by a range of virulence factors that elicit their effects on the epithelial cells. This review outlines these interactions and examines the therapeutic implications of understanding the mechanisms of pathogenesis of this difficult, antibiotic-resistant, opportunistic pathogen.


Author(s):  
Jin-Soo Park ◽  
RyeonJin Cho ◽  
Eun-Young Kang ◽  
Yeon-Mok Oh

AbstractEmphysema, a pathological component of chronic obstructive pulmonary disease, causes irreversible damage to the lung. Previous studies have shown that Slit plays essential roles in cell proliferation, angiogenesis, and organ development. In this study, we evaluated the effect of Slit2 on the proliferation and migration of mouse lung epithelial cells and its role in regeneration in an emphysema lung mouse model. Here, we have shown that Slit2/Robo signaling contributes to the regeneration of lungs damaged by emphysema. Mouse epithelial lung cells treated with Slit2 exhibited increased proliferation and migration in vitro. Our results also showed that Slit2 administration improved alveolar regeneration in the emphysema mouse model in vivo. Furthermore, Slit2/Robo signaling increased the phosphorylation of ERK and Akt, which was mediated by Ras activity. These Slit2-mediated cellular signaling processes may be involved in the proliferation and migration of mouse lung epithelial cells and are also associated with the potential mechanism of lung regeneration. Our findings suggest that Slit2 administration may be beneficial for alveolar regeneration in lungs damaged by emphysema.


Sign in / Sign up

Export Citation Format

Share Document