scholarly journals Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds

2021 ◽  
Vol 242 ◽  
pp. 126595
Author(s):  
P. Rajani ◽  
C. Rajasekaran ◽  
M.M. Vasanthakumari ◽  
Shannon B. Olsson ◽  
G. Ravikanth ◽  
...  
2013 ◽  
Vol 76 (11) ◽  
pp. 1879-1886 ◽  
Author(s):  
WAFA ROUISSI ◽  
LUISA UGOLINI ◽  
CAMILLA MARTINI ◽  
LUCA LAZZERI ◽  
MARTA MARI

The fungicidal effects of secondary metabolites produced by a strain of Penicillium expansum (R82) in culture filtrate and in a double petri dish assay were tested against one isolate each of Botrytis cinerea, Colletotrichum acutatum, and Monilinia laxa and six isolates of P. expansum, revealing inhibitory activity against every pathogen tested. The characterization of volatile organic compounds released by the R82 strain was performed by solid-phase microextraction–gas chromatographic techniques, and several compounds were detected, one of them identified as phenethyl alcohol (PEA). Synthetic PEA, tested in vitro on fungal pathogens, showed strong inhibition at a concentration of 1,230 μg/ml of airspace, and mycelium appeared more sensitive than conidia; nevertheless, at the concentration naturally emitted by the fungus (0.726 ± 0.16 μg/ml), commercial PEA did not show any antifungal activity. Therefore, a combined effect between different volatile organic compounds produced collectively by R82 can be hypothesized. This aspect suggests further investigation into the possibility of exploiting R82 as a nonchemical alternative in the control of some plant pathogenic fungi.


2021 ◽  
Author(s):  
Valentina Lazazzara ◽  
Bianca Vicelli ◽  
Christoph Bueschl ◽  
Alexandra Parich ◽  
Ilaria Pertot ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Liping Bai ◽  
Wenjia Wang ◽  
Juan Hua ◽  
Zhifu Guo ◽  
Shihong Luo

Abstract Background Plants are known to emit diverse volatile organic compounds (VOCs), which may function as signaling substances in plant communication with other organisms. Thuja occidentalis, which is widely cultivated throughout China, releases aromatic VOCs into the air in winter and early spring. The relationship of this cultivated plant with its neighboring plants is necessary for the conservation of biodiversity. Results (−)-α-thujone (60.34 ± 5.58%) was found to be the major component in VOCs from the Shenyang population. The essential oils (EOs) from the Kunming and Shenyang populations included the major components (−)-α-thujone, fenchone, (+)-β-thujone, and (+)-hibaene, identified using GC-MS analyses. (−)-α-thujone and (+)-hibaene were purified and identified by NMR identification. EOs and (−)-α-thujone exhibited valuable phytotoxic activities against seed germination and seedling growth of the plants Taraxacum mongolicum and Arabidopsis thaliana. Moreover, the EOs displayed potent inhibitory activity against pathogenic fungi of maize, including Fusarium graminearum, Curvularia lunata, and Bipolaris maydis, as well as one human fungal pathogen, Candida albicans. Quantitative analyses revealed high concentrations of (−)-α-thujone in the leaves of T. occidentalis individuals from both the Shenyang and Kunming populations. However, (−)-α-thujone (0.18 ± 0.17 μg/g) was only detected in the rhizosphere soil to a distance of 0.5 m from the plant. Conclusions Taken together, our results suggest that the phytotoxic effects and antifungal activities of the EOs and (−)-α-thujone in T. occidentalis certainly increased the adaptability of this plant to the environment. Nevertheless, low concentrations of released (−)-α-thujone indicated that reasonable distance of T. occidentalis with other plant species will impair the effects of allelochemical of T. occidentalis.


2021 ◽  
Vol 24 (4) ◽  
pp. 527-536
Author(s):  
Lincon Rafael da ◽  
Paulo Henrique Pereira Co ◽  
Gustavo Henrique S ◽  
Bruna Eliza Gonç ◽  
João Batista Tavares da ◽  
...  

2020 ◽  
Vol 147 ◽  
pp. 104279 ◽  
Author(s):  
Lincon Rafael da Silva ◽  
Maria Cléria Valadares-Inglis ◽  
Maria Carolina Blassioli Moraes ◽  
Diego Martins Magalhães ◽  
Daniel Nogoceke Sifuentes ◽  
...  

Holzforschung ◽  
2001 ◽  
Vol 55 (3) ◽  
pp. 233-237 ◽  
Author(s):  
Sonia N. Humphris ◽  
Ron E. Wheatley ◽  
Alan Bruce

Summary Previous work by Srinivasan et al. (1992) and Bruce et al. (1996) has shown that inhibition of wood decay fungi by volatile organic compounds produced by Trichoderma spp. is dependent on the type of growth media and age of the Trichoderma colony. Wheatley et al. (1997) identified five volatile organic compounds produced by Trichoderma spp. that may be inhibitory to wood decay fungi. The effects of four of these compounds (Acetone, 2-methyl-1-butanol, heptanal and octanal) were tested over a range of concentrations against four selected wood decay fungi. Fungi were incubated in malt extract broth under appropriate conditions and growth was estimated by biomass production and respiration rates. Growth of all four fungi was affected by at least one of the compounds, usually by inhibition but occasionally stimulation. All but two of the fungus/chemical combinations showed significant effects on biomass development (P < 0.05) and fifteen of the sixteen combinations produced a significant concentration effect on respiration rates (P < 0.05). The aldehydes, heptanal and octanal, were very effective against all four wood decay fungi. All four fungi were inhibited by more than 80% at 25 μg ml−1 by heptanal and three of the four fungi were totally inhibited at 250 μg ml−1. Acetone did not inhibit the four wood decay fungi and even stimulated fungal growth at some concentrations. 2-methyl-1-butanol was only effective at the highest concentration of 2500 μg ml−1. The implications of these results for the biological control of wood decay fungi and future studies are discussed.


Sign in / Sign up

Export Citation Format

Share Document