Influence of alkali cations on the inter-conversion of extra-framework aluminium species in dealuminated zeolites

2014 ◽  
Vol 189 ◽  
pp. 173-180 ◽  
Author(s):  
Andrey A. Rybakov ◽  
Alexander V. Larin ◽  
Georgy M. Zhidomirov
1980 ◽  
Vol 45 (2) ◽  
pp. 369-375 ◽  
Author(s):  
Stanislav Miertuš ◽  
Ondrej Kyseľ

The 4-nitrobenzophenone radical anion prepared by electrolysis was studied by ESR spectroscopy. On the basis of the interpretation of ESR spectra, the conformation of this system was estimated. The effect of the concentration of supporting electrolyte and of the presence of a proton-donor agent (C2H5OH) was examined. It is assumed that changes in hyperfine splitting constants are caused by association.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3371 ◽  
Author(s):  
Svensson ◽  
Grins ◽  
Eklöf ◽  
Eriksson ◽  
Wardecki ◽  
...  

The CO2 adsorption on various Prussian blue analogue hexacyanoferrates was evaluated by thermogravimetric analysis. Compositions of prepared phases were verified by energy-dispersive X-ray spectroscopy, infra-red spectroscopy and powder X-ray diffraction. The influence of different alkali cations in the cubic Fm3m structures was investigated for nominal compositions A2/3Cu[Fe(CN)6]2/3 with A = vacant, Li, Na, K, Rb, Cs. The Rb and Cs compounds show the highest CO2 adsorption per unit cell, 3.3 molecules of CO2 at 20 C and 1 bar, while in terms of mmol/g the Na compound exhibits the highest adsorption capability, 3.8 mmol/g at 20 C and 1 bar. The fastest adsorption/desorption is exhibited by the A-cation free compound and the Li compound. The influence of the amount of Fe(CN)6 vacancies were assessed by determining the CO2 adsorption capabilities of Cu[Fe(CN)6]1/2 (Fm3m symmetry, nominally 50% vacancies), KCu[Fe(CN)6]3/4 (Fm3m symmetry, nominally 25% vacancies), and CsCu[Fe(CN)6] (I-4m2 symmetry, nominally 0% vacancies). Higher adsorption was, as expected, shown on compounds with higher vacancy concentrations.


2006 ◽  
Vol 12 (24) ◽  
pp. 6190-6190 ◽  
Author(s):  
Patrik Västilä ◽  
Alexey B. Zaitsev ◽  
Jenny Wettergren ◽  
Timofei Privalov ◽  
Hans Adolfsson

Soil Research ◽  
1989 ◽  
Vol 27 (4) ◽  
pp. 663 ◽  
Author(s):  
EA Close ◽  
HKJ Powell

This paper examines the use of short extraction times, and the determination of aluminium with chrome azurol S (CAS), for the estimation of 0.02 M CaCl2-soluble aluminium in soils. It reports the correlation between CAS-reactive aluminium in 5 min extracts and percent maximum yield of white clover (Trifolium repens) for a series of acid soils. The reactivity of soluble and colloidal aluminium species with the metallochromic reagent CAS has been assessed. ~ l ( a q ) ~ + , simple hydroxy species and complexes of weakly binding ligands (salicylic acid, tannins) are CAS-reactive (2 rnin). In contrast, complexes of strongly binding ligands (citric acid, fulvic acid) are not CAS-reactive ([Al] ~ [L] ~ [CAS] ~ 1-2~10-5 M). For a series of six limed phosphated topsoils and subsoils (pH 4.2-5.5), 0.02 M CaCl2- soluble aluminium, as determined with CAS, was negatively correlated against the percent maximum yield of white clover; r2 = -0.73** (5 min extraction), n = 20. This correlation is similar to that for yield against total aluminium as determined by atomic absorption spectroscopy after 60 min extraction (r2 = -0.77**). However, the colorimetric analysis is more convenient and sensitive; further, it does not measure colloidal and polymeric aluminium species (which may not be plant-available). The satisfactory correlation achieved for short extraction times suggests use of CAS for a rapid field method for aluminium toxicity in soils.


2006 ◽  
Vol 62 (6) ◽  
pp. 1010-1018 ◽  
Author(s):  
Vladislav A. Blatov ◽  
Gregory D. Ilyushin ◽  
Olga A. Blatova ◽  
Nataly A. Anurova ◽  
Alexej K. Ivanov-Schits ◽  
...  

In terms of the Voronoi–Dirichlet partition of the crystal space, definitions are given for such concepts as `void', `channel' and `migration path' for inorganic structures with three-dimensional networks of chemical bonds. A number of criteria are proposed for selecting significant voids and migration channels for alkali cations Li+–Cs+ based on the average characteristics of the Voronoi–Dirichlet polyhedra for alkali metals in oxygen-containing compounds. A general algorithm to analyze the voids in crystal structures has been developed and implemented in the computer package TOPOS. This approach was used to predict the positions of Li+ and Na+ cations and to analyze their possible migration paths in the solid superionic materials Li3 M 2P3O12 (M = Sc, Fe; LIPHOS) and Na1 + x Zr2Si x P3 − x O12 (NASICON), whose framework structures consist of connected M octahedra and T tetrahedra. Using this approach we determine the most probable places for charge carriers (coordinates of alkali cations) and the dimensionality of their conducting sublattice with high accuracy. The theoretically calculated coordinates of the alkali cations in MT frameworks are found to correlate to within 0.33 Å with experimental data for various phases of NASICON and LIPHOS. The proposed method of computer analysis is universal and suitable for investigating fast-ion conductors with other conducting components.


Sign in / Sign up

Export Citation Format

Share Document