Microstructural investigation of stress-assisted α″–α′ phase transformation in cold-rolled Ti–7.5Mo alloy

Micron ◽  
2014 ◽  
Vol 65 ◽  
pp. 34-44 ◽  
Author(s):  
Yen-Chun Chen ◽  
Chien-Ping Ju ◽  
Jiin-Huey Chern Lin
Author(s):  
Syed Ejaz Hussain ◽  
Weiguo Wang ◽  
Xinfu Gu ◽  
Yunkai Cui ◽  
Ahua Du ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Shu Wang ◽  
Yilong Liang ◽  
Hao Sun ◽  
Xin Feng ◽  
Chaowen Huang

The main objective of the present study was to understand the oxygen ingress in titanium alloys at high temperatures. Investigations reveal that the oxygen diffusion layer (ODL) caused by oxygen ingress significantly affects the mechanical properties of titanium alloys. In the present study, the high-temperature oxygen ingress behavior of TC21 alloy with a lamellar microstructure was investigated. Microstructural characterizations were analyzed through optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). Obtained results demonstrate that oxygen-induced phase transformation not only enhances the precipitation of secondary α-phase (αs) and forms more primary α phase (αp), but also promotes the recrystallization of the ODL. It was found that as the temperature of oxygen uptake increases, the thickness of the ODL initially increases and then decreases. The maximum depth of the ODL was obtained for the oxygen uptake temperature of 960 °C. In addition, a gradient microstructure (αp + β + βtrans)/(αp + βtrans)/(αp + β) was observed in the experiment. Meanwhile, it was also found that the hardness and dislocation density in the ODL is higher than that that of the matrix.


2017 ◽  
Vol 29 (7) ◽  
pp. 3246-3250 ◽  
Author(s):  
Tanghao Liu ◽  
Yingxia Zong ◽  
Yuanyuan Zhou ◽  
Mengjin Yang ◽  
Zhen Li ◽  
...  

2013 ◽  
Vol 203-204 ◽  
pp. 71-76
Author(s):  
Sławomir Kołodziej ◽  
Joanna Kowalska ◽  
Wiktoria Ratuszek ◽  
Wojciech Ozgowicz ◽  
Krzysztof Chruściel

The aim of this work was the microstructure and texture analysis of a deformed via cold-rolling 24.5Mn-3.5Si-1.5Al-Ti-Nb TWIP/TRIP type steel. It was found, that during cold plastic deformation a phase transformation of austenite into martensite takes place. The transformation progress was confirmed by the microscopic investigations. The texture of austenite is characterized by a limited α1=||RD fibre and the γ=||ND fibre. The texture of austenite changed with increasing deformation rate. In the texture of deformed austenite the strongest orientation is the {110} Goss orientation, which belongs to the α=||ND orientation fibre. During cold plastic deformation γ→ε and γ→ε→α’ phase transformations as well as the deformation of γ, ε and α’ phases are taking place in the steel. The formed ε phase (hexagonal structure) also possesses a distinct texture.


2017 ◽  
Vol 131 ◽  
pp. 271-279 ◽  
Author(s):  
Henglv Zhao ◽  
Min Song ◽  
Song Ni ◽  
Shuai Shao ◽  
Jian Wang ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 544 ◽  
Author(s):  
Xueqi Jiang ◽  
Xiaoqiang Shi ◽  
Xiaoguang Fan ◽  
Qi Li

Large size (>10000 μm2) precipitate-free zones in the absence of microsegregation were observed in the near-β Ti-55531 titanium alloy after furnace cooling from high temperature and longtime annealing in the single-β phase field. To reveal the formation mechanism of the large size precipitate-free zone, continuous cooling and isothermal heat treatment were carried out to investigate the β-α phase transformation process. It was found that the large size precipitate free zone is attributed to the heterogeneous nucleation of α phase. The nucleation site evolves in three different modes: I-random nucleation inside the β grain, II-network nucleation inside the β grain and, III-heterogeneous nucleation on the precipitated α phase. Modes I and II lead to homogeneous transformed structure while Mode III results in the large size precipitate-free zone. Both modes II and III are promoted at high annealing temperature, rapid cooling above 600 °C or slow cooling below 600 °C. Mode II is common as it can minimize the strain energy in phase transformation. As a result, the formation of the large size precipitate-free zone is not deterministic.


Sign in / Sign up

Export Citation Format

Share Document