Migration of adhesive material in electrostatically actuated MEMS switch

2021 ◽  
Vol 125 ◽  
pp. 114372
Author(s):  
Ilia V. Uvarov
Author(s):  
Ibrahim Chamseddine ◽  
Hadi Kasab ◽  
Maya Antoun ◽  
Tawfiq Dahdah ◽  
Mohammed Mirhi ◽  
...  

A MEMS RF switch is expected to undergo 10 billion switching cycles before failure. Until complete physical explanation for these failure modes that include contact adhesion, damping effects, stiction, increases in resistance with time, dielectric breakdown, and electron trapping is fully established, the technology’s numerous advantages cannot be harvested reliably and efficiently. This paper investigates prospective solutions to problems in switch designs by proposing a new design for the switch. We consider the new design from different perspectives: dynamic, electric, fluidic, etc. It is billed to overcome the difficulties and involves the implementation of liquid metal contact electrostatically actuated to ensure the same switching performance, with prolonged life span, and robust switching speed.


2017 ◽  
Vol 4 (1) ◽  
pp. 1323367 ◽  
Author(s):  
T. Lakshmi Narayana ◽  
K. Girija Sravani ◽  
K. Srinivasa Rao ◽  
Kun Chen

Author(s):  
Peter A. Kolis ◽  
Marisol Koslowski ◽  
Anil K. Bajaj

We present simulations of the dynamic response of radio frequency micro-electro-mechanical-systems (RF-MEMS) switches undergoing creep deformation. The model includes a microscale-informed Coble creep formulation incorporated in a beam model of an electrostatically actuated RF-MEMS switch, and it is solved using a Ritz-Galerkin based modal expansion. The resulting effects on the long-term device behavior as well as the implications of uncertainty in the device geometry and material parameters are studied. We find that the addition of creep to the beam model results in an undesired degradation of the device performance, as evidenced by decreases in the closing and release voltages.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hassen M. Ouakad ◽  
Mohammad I. Younis

Modeling and analysis for the static behavior and collapse instabilities of a MEMS cantilever switch subjected to both electrical and thermal loadings are presented. The thermal loading forces can be as a result of a huge amount of switching contact of the microswitch. The model considers the microbeam as a continuous medium and the electric force as a nonlinear function of displacement and accounts for its fringing-field effect. The electric force is assumed to be distributed over specific lengths underneath the microbeam. A boundary-value solver is used to study the collapse instability, which brings the microbeam from its unstuck configuration to touch the substrate and gets stuck in the so-called pinned configuration. We have found negligible influence of the temperature on the static stability of the switch. We then investigate the effect of the thermal heating due to the current flow on the cantilever switch while it is in the on position (adhered position). We also found slight effect on the static stability of the switch.


Sign in / Sign up

Export Citation Format

Share Document