Carbonation of stainless steel slag in the context of in situ Brownfield remediation

2014 ◽  
Vol 59 ◽  
pp. 91-100 ◽  
Author(s):  
Oriana Capobianco ◽  
Giulia Costa ◽  
Laurens Thuy ◽  
Elisa Magliocco ◽  
Niels Hartog ◽  
...  
2014 ◽  
Vol 69 ◽  
pp. 223
Author(s):  
Oriana Capobianco ◽  
Giulia Costa ◽  
Laurens Thuy ◽  
Elisa Magliocco ◽  
Niels Hartog ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 487 ◽  
Author(s):  
Jianli Li ◽  
Qiqiang Mou ◽  
Qiang Zeng ◽  
Yue Yu

The stability of chromium in stainless steel slag has a positive correlation with spinel particle size and a negative correlation with the calcium content of the spinel. The effect of heating time on the precipitation of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3-FeO system was investigated in the laboratory. Scanning electron microscopy with energy-dispersive and X-ray diffraction were adopted to observe the microstructure, test the chemical composition, and determine the mineral phases of synthetic slags, and FactSage7.1 was applied to calculate the crystallization process of the molten slag. The results showed that the particle size of the spinel crystals increased from 9.42 to 10.73 μm, the calcium content in the spinel crystals decreased from 1.38 at% to 0.78 at%, and the content of chromium in the spinel crystal increased from 16.55 at% to 22.78 at% with an increase in the heating time from 0 min to 120 min at 1450 °C. Furthermore, the species of spinel minerals remained constant. Therefore, an extension in the heating time is beneficial for improving the stability of chromium in stainless steel slag.


2019 ◽  
Vol 5 (2) ◽  
pp. 157-171 ◽  
Author(s):  
Mikael Lindvall ◽  
Lily Lai Chi So ◽  
Mahdi Mahdi ◽  
Janice Bolen ◽  
Johannes Nell ◽  
...  

Rare Metals ◽  
2018 ◽  
Vol 37 (5) ◽  
pp. 413-420 ◽  
Author(s):  
Wen-Di Fan ◽  
Qiang-Wei Yang ◽  
Bin Guo ◽  
Bo Liu ◽  
Shen-Gen Zhang

Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 51 ◽  
Author(s):  
Tuo Wu ◽  
Yanling Zhang ◽  
Zheng Zhao ◽  
Fang Yuan

High-temperature quench method, scanning electron microscope-energy dispersive spectroscopy (SEM-EDS), and thermodynamic analysis were adopted to study the effects of Fe2O3 on reduction process of Cr-containing solid waste self-reduction briquette (Cr-RB). Moreover, the relevant mechanism was also studied. The results clearly showed that the addition of Fe2O3 decreased the chromium-iron ratio (Cr/(Fe + Cr)) of Cr-RB itself and promoted the reduction of chrome oxide in the Cr-containing solid wastes such as stainless steel slag and dust. A large number of Fe-C alloy droplets generated in the lower temperature could decrease the activity of reduced chromium by in situ dissolution and the reduction of Cr-oxide was accelerated. Rapid separation of metal and slag could be achieved at a relatively lower temperature, which was very beneficial to the efficient recovery of Cr. Finally, the corresponding mechanism diagram was presented.


Sign in / Sign up

Export Citation Format

Share Document