Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function

Mitochondrion ◽  
2015 ◽  
Vol 22 ◽  
pp. 31-44 ◽  
Author(s):  
Hung-Yu Lin ◽  
Chia-Wei Liou ◽  
Shang-Der Chen ◽  
Te-Yao Hsu ◽  
Jiin-Haur Chuang ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Tsu-Kung Lin ◽  
Shang-Der Chen ◽  
Yao-Chung Chuang ◽  
Min-Yu Lan ◽  
Jiin-Haur Chuang ◽  
...  

Wharton’s jelly mesenchymal stem cells (WJMSCs) transfer healthy mitochondria to cells harboring a mitochondrial DNA (mtDNA) defect. Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the major subgroups of mitochondrial diseases, caused by the mt.3243A>G point mutation in the mitochondrial tRNALeu(UUR) gene. The specific aim of the study is to investigate whether WJMSCs exert therapeutic effect for mitochondrial dysfunction in cells of MELAS patient through donating healthy mitochondria. We herein demonstrate that WJMSCs transfer healthy mitochondria into rotenone-stressed fibroblasts of a MELAS patient, thereby eliminating mutation burden and rescuing mitochondrial functions. In the coculture system in vitro study, WJMSCs transferred healthy mitochondria to rotenone-stressed MELAS fibroblasts. By inhibiting actin polymerization to block tunneling nanotubes (TNTs), the WJMSC-conducted mitochondrial transfer was abrogated. After mitochondrial transfer, the mt.3243A>G mutation burden of MELAS fibroblasts was reduced to an undetectable level, with long-term retention. Sequencing results confirmed that the transferred mitochondria were donated from WJMSCs. Furthermore, mitochondrial transfer of WJMSCs to MELAS fibroblasts improves mitochondrial functions and cellular performance, including protein translation of respiratory complexes, ROS overexpression, mitochondrial membrane potential, mitochondrial morphology and bioenergetics, cell proliferation, mitochondrion-dependent viability, and apoptotic resistance. This study demonstrates that WJMSCs exert bioenergetic therapeutic effects through mitochondrial transfer. This finding paves the way for the development of innovative treatments for MELAS and other mitochondrial diseases.


2021 ◽  
Vol 47 (1) ◽  
pp. 320-328
Author(s):  
Hezhu Wang ◽  
Xiaoqing Yang ◽  
Xiaojing Chen ◽  
Huihui Xie ◽  
Junxia Wang ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Zhao Ting ◽  
Yan Zhi‐xin ◽  
Tan You‐wen ◽  
Yang Fu‐ji ◽  
Sun Hui ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Lu Xu ◽  
Jianjun Zhou ◽  
Jingyu Liu ◽  
Yong Liu ◽  
Lei Wang ◽  
...  

Human mesenchymal stem cells derived from the umbilical cord (UC) are a favorable source for allogeneic cell therapy. Here, we successfully isolated the stem cells derived from three different compartments of the human UC, including perivascular stem cells derived from umbilical arteries (UCA-PSCs), perivascular stem cells derived from umbilical vein (UCV-PSCs), and mesenchymal stem cells derived from Wharton’s jelly (WJ-MSCs). These cells had the similar phenotype and differentiation potential toward adipocytes, osteoblasts, and neuron-like cells. However, UCA-PSCs and UCV-PSCs had more CD146+ cells than WJ-MSCs (P<0.05). Tube formation assay in vitro showed the largest number of tube-like structures and branch points in UCA-PSCs among the three stem cells. Additionally, the total tube length in UCA-PSCs and UCV-PSCs was significantly longer than in WJ-MSCs (P<0.01). Microarray, qRT-PCR, and Western blot analysis showed that UCA-PSCs had the highest expression of the Notch ligand Jagged1 (JAG1), which is crucial for blood vessel maturation. Knockdown of Jagged1 significantly impaired the angiogenesis in UCA-PSCs. In summary, UCA-PSCs are promising cell populations for clinical use in ischemic diseases.


Sign in / Sign up

Export Citation Format

Share Document