Characterization, differentiation, and population doubling time of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) in passage 5 and 8

2021 ◽  
Author(s):  
Rizal ◽  
Rahimi Syaidah ◽  
Ziyan Muhammad Aqsha ◽  
Adella Josephin ◽  
Vidi Miranda Pakpahan
2021 ◽  
Author(s):  
Mahnaz Tashakori ◽  
Fatemeh Asadi ◽  
Faezeh-Sadat Khorram ◽  
Azita Manshoori ◽  
Ali Hosseini-Chegeni ◽  
...  

Abstract BackgroundMesenchymal stem cells (MSCs), derived from various tissues, have served as a promising source of cells in clinic and regenerative medicine. Umbilical cord-Wharton’s jelly (WJ-MSCs)-derived MSCs exhibit advantages over those from adult tissues, such as no ethical concerns, shorter population doubling time, broad differentiation potential, readily available non-invasive source, prolonged maintenance of stemness properties. Material and methodsThe aim of this study was to evaluate the effect of MRI (1.5 T, 10 min) on stemness gene expression patterns (OCT-4, SOX-2, NANOG) of WJ-MSCs. In addition, we assessed cell viability, growth kinetics and apoptosis of WJ-MSCs after MRI treatment. ResultsThe quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) data showed that transcript levels of SOX-2, NANOG in MRI-treated WJ-MSCs were increased 32- and 213-fold, respectively. MTT assay was performed at 24, 48, and 72 hours post-treatment and the viability was not significantly difference between two groups. The doubling time of MRI group was markedly higher than control group. In addition, the colony formation ability of WJ-MSCs after MRI treatment significantly increased. Furthermore, no change in apoptosis was seen before or after MRI treatment. ConclusionsOur results suggest the use of MRI can improve quality of MSCs and may enhance the efficacy of mesenchymal stem cell-based therapies.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4250-4250
Author(s):  
Jun Ho Jang ◽  
Hyun Woo Lee ◽  
Young-Woo Eom ◽  
Seok Yun Kang ◽  
Joon Seong Park ◽  
...  

Abstract Mesenchymal stem cells (MSCs) are a highly promising source of adult stem cells for purposes of cell therapy and tissue repair in the field of regenerative medicine. Although the most studied and accessible source of MSC is the bone marrow, the clinical use of bone marrow-derived MSCs (BMSCs) has presented problems, including pain, morbidity, and low cell number upon harvest. For those reasons, we isolated, cultured, and characterized MSCs from a number of tissues; including wharton’s jelly, cord blood, and adipose tissues that were discarded routinely in the past, and evaluated the usefulness of these MSCs compared to BMSCs. Proliferation ability of Wharton’s jelly-derived MSCs (WJ-MSCs), Cord blood-derived MSCs (CB-MSCs), or adipose tissue-derived MSCs (ASCs) was lost at passage 8–10 (22–27 population doubling), passage 7–10, or passage 7–12 (45–50 population doubling), respectively. WJ-MSCs, CB-MSCs, and ASCs expressed CD73, CD90, and CD105, CD90, CD105, and CD166, and CD44, CD73, CD90, and CD166, respectively, were absent for CD14, CD31, and CD45, and differentiated into osteoblast, adipocyte, and chondrogenic lineages under appropriate culture condition. In this study, like BMSCs, WJ-MSCs, CB-MSCs, and ASCs expressed similar cell surface antigens, were able to differentiate into mesenchymal lineages, and possessed highly proliferation potential. Therefore, MSCs isolated from wharton’s jelly, cord blood, and adipose tissue may become useful alternative sources of MSCs to cell therapy and tissue repair in the field of regenerative medicine.


2019 ◽  
Vol 20 (6) ◽  
pp. 1485 ◽  
Author(s):  
Xiao-Shu Zhan ◽  
Saeed El-Ashram ◽  
Dong-Zhang Luo ◽  
Hui-Na Luo ◽  
Bing-Yun Wang ◽  
...  

Mesenchymal stem cells (MSCs) are the most promising seed cells for cell therapy. Comparing the biological and transcriptome gene characteristics of MSCs from different sources provides an important basis for the screening of clinically used cells. The main purpose of this experiment was to establish methods for the isolation and culture of MSCs from five different canine sources, including adipose tissue, bone marrow, umbilical cord, amniotic membrane, and placenta, and compare biological and transcriptome characteristics of MSCs, in order to provide a basis for the clinical application of canine MSCs. MSCs were isolated from Chinese pastoral dogs, and the following experiments were performed: (1) the third, sixth, and ninth generations of cells were counted, respectively, and a growth curve was plotted to calculate the MSC population doubling time; (2) the expression of CD34 and CD44 surface markers was studied by immunofluorescence; (3) the third generation of cells were used for osteogenetic and adipogenic differentiation experiments; and (4) MSC transcriptome profiles were performed using RNA sequencing. All of the five types of MSCs showed fibroblast-like adherent growth. The cell surface expressed CD44 instead of CD34; the third-generation MSCs had the highest proliferative activity. The average population doubling time of adipose mesenchymal stem cells (AD-MSCs), placenta mesenchymal stem cells (P-MSCs), bone marrow mesenchymal stem cells (BM-MSCs), umbilical cord mesenchymal stem cells (UC-MSCs), and amniotic mesenchymal stem cells (AM-MSCs) were 15.8 h, 21.2 h, 26.2 h, 35 h, and 41.9 h, respectively. All five types of MSCs could be induced to differentiate into adipocytes and osteoblasts in vitro, with lipid droplets appearing after 8 days and bone formation occurring 5 days after AD-MSC induction. However, the multilineage differentiation for the remaining of MSCs was longer compared to that of the AD-MSCs. The MSC transcriptome profiles showed that AD-MSC and BM-MSCs had the highest homology, while P-MSCs were significantly different compared to the other four types of MSCs. All the isolated MSCs had the main biological characteristics of MSCs. AD-MSCs had the shortest time for proliferation, adipogenesis, and osteogenic differentiation.


2014 ◽  
Vol 71 (8) ◽  
pp. 735-741 ◽  
Author(s):  
Jasmina Debeljak-Martacic ◽  
Jelena Francuski ◽  
Tijana Luzajic ◽  
Nemanja Vukovic ◽  
Slavko Mojsilovic ◽  
...  

Background/Aim. The last decade has been profoundly marked by persistent attempts to use ex vivo expanded and manipulated mesenchymal stem cells (MSCs), as a tool in different types of regenerative therapy. In the present study we described immunophenotype and the proliferative and differentiation potential of cells isolated from pulp remnants of exfoliated deciduous teeth in the final phase of root resorption. Methods. The initial adherent cell population from five donors was obtained by the outgrowth method. Colony forming unit-fibroblast (CFU-F) assay was performed in passage one. Cell expansion was performed until passage three and all tests were done until passage eight. Cells were labeled for early mesenchymal stem cells markers and analysis have been done using flow cytometry. The proliferative potential was assessed by cell counting in defined time points and population doubling time was calculated. Commercial media were used to induce osteoblastic, chondrogenic and adipogenic differentiation. Cytology and histology methods were used for analysis of differentiated cell morphology and extracellular matrix characteristics. Results. According to immunophenotype analyses all undifferentiated cells were positive for the mesenchymal stem cell markers: CD29 and CD73. Some cells expressed CD146 and CD106. The hematopoietic cell marker, CD34, was not detected. In passage one, incidence of CFU-F was 4.7 ? 0.5/100. Population doubling time did not change significantly during cell subcultivation and was in average 25 h. After induction of differentiation, the multicolony derived cell population had a tri-lineage differentiation potential, since mineralized matrix, cartilage-like tissue and adipocytes were successfully formed after three weeks of incubation. Conclusion. Altogether, these data suggest that remnants of deciduous teeth dental pulp contained cell populations with mesenchymal stem cell-like features, with a high proliferation and trilineage differentiation potential and that these cultures are suitable for further in vitro evaluation of cell based therapies.


2021 ◽  
Vol 8 (2) ◽  
pp. 24
Author(s):  
Min-Soo Seo ◽  
Kyung-Ku Kang ◽  
Se-Kyung Oh ◽  
Soo-Eun Sung ◽  
Kil-Soo Kim ◽  
...  

Wharton’s jelly is a well-known mesenchymal stem cell source in many species, including humans. However, there have been no reports confirming the presence of mesenchymal stem cells in Wharton’s jelly in cats. The purpose of this study was to isolate mesenchymal stem cells (MSCs) from the Wharton’s jelly of cats and to characterize stem cells. In this study, feline Wharton’s jelly-derived mesenchymal stem cells (fWJ-MSCs) were isolated and successfully cultured. fWJ-MSCs were maintained and the proliferative potential was measured by cumulative population doubling level (CPDL) test, scratch test, and colony forming unit (CFU) test. Stem cell marker, karyotyping and immunophenotyping analysis by flow cytometry showed that fWJ-MSCs possessed characteristic mesenchymal stem cell markers. To confirm the differentiation potential, we performed osteogenic, adipogenic and chondrogenic induction under each differentiation condition. fWJ-MSCs has the ability to differentiate into multiple lineages, including osteogenic, adipogenic and chondrogenic differentiation. This study shows that Wharton’s jelly of cat can be a good source of mesenchymal stem cells. In addition, fWJ-MSCs may be useful for stem cell-based therapeutic applications in feline medicine.


2020 ◽  
Author(s):  
Min-Soo Seo ◽  
Kyung-Ku Kang ◽  
Se-Kyung Oh ◽  
Soo-Eun Sung ◽  
Kil-Soo Kim ◽  
...  

Abstract Background Wharton’s jelly is a well-known mesenchymal stem cell source in many species, including human. However, there have been no reports confirming the presence of mesenchymal stem cells in wharton’s jelly in cats. The purpose of this study was to isolate mesenchymal stem cells (MSCs) from wharton’s jelly of cats and to characterize stem cells. Result In this study, Feline wharton’s jelly-derived mesenchymal stem cells (fWJ-MSCs) were isolated and successfully cultured. fWJ-MSCs were maintained and the proliferative potential was measured by cumulative population doubling level (CPDL) test, scratch test and colony forming unit (CFU) test. Stem cell marker, karyotyping and immunophenotyping analysis by flow cytometry showed that fWJ-MSCs possessed characteristic mesenchymal stem cell markers. To confirm the differentiation potential, we performed osteogenic, adipogenic and chondrogenic induction under each differentiation condition. fWJ-MSC has the ability to differentiate into multiple lineages including osteogenic, adipogenic and chondrogenic differentiation. Conclusions This study shows that wharton’s jelly of cat can be a good source of mesenchymal stem cells. In addition, fWJ-MSC may be useful for stem cell-based therapeutic applications in feline medicine.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hager Abouelnaga ◽  
Doaa El-Khateeb ◽  
Yasmine Moemen ◽  
Ashraf El-Fert ◽  
Mohamed Elgazzar ◽  
...  

Abstract Background Isolation of post-partum umbilical cord Wharton’s jelly stem cells has gained attention as an alternative source of the bone marrow. Because easy isolation, lack of ethical concerns, and the presence of both embryonic and adult stem cells have made them a valuable source for use in therapeutic applications and regenerative medicine. The study utilized a modified protocol using in-house human pooled cord blood serum for isolation and expansion of the mesenchymal stem cells obtained from the human umbilical cord Wharton’s jelly. Cell proliferation and population doubling time and tri-lineage differentiation were assessed, and the expressions of mesenchymal cell surface markers CD44, CD90, CD105, and CD34 were assessed by flow cytometry and RT-PCR. The genetic stability of the isolated cells was assessed by chromosomal karyotype. Results The isolated cells displayed fibroblastic-like morphology and tri-lineage differentiation into adipocyte, chondrocyte, and osteocyte. The isolated cells maintained the proliferative competence with a doubling time ranged from 38 to 42h and corresponded well with the standard positive and negative molecular markers (CD44+, CD90+, CD 105+, and CD34−). Cell senescence occurred at the later passage of the cells (P15) affecting, about 25% of the population. Metaphases spread of the cells showed normal diploid karyotypes, with typical chromosomal plates indicating genetic stability of the isolated cells. Conclusion The primary cultures exhibited success in isolating the umbilical cord Wharton’s jelly mesenchymal stem cells, which maintained their tri-lineage differentiation potential, phenotypes and karyotype characteristics on further passage and expansion.


2020 ◽  
Vol 4 (2) ◽  
pp. 76
Author(s):  
Marlina Marlina ◽  
Rizki Rahmadian ◽  
Armenia Armenia ◽  
Wahyu Widowati ◽  
Rizal Rizal ◽  
...  

Background: Mesenchymal stem cells (MSCs) are the cells which has high renewal capacity and and are capable for differentiating into some types of cells. MSCs can be obtained from several tissues including bone marrow, synovial membrane, blood, adipose tissue and periosteum. The proliferation and self-repair ability of MSCs are the advantages to use as stem cells-based therapy of various diseases. The aim of this study was to determine the differentiation, characterization and priliferation of synovial membrane-derived MSCs (SM-MSCs).Materials and Methods: The cells proliferation capacity was determined by cell counting using trypan blue, characterization of MSCs (cluster of differentiation (CD)90, CD11b, CD73, CD34, CD19, CD45, CD105 and human leukocyte antigen-DR isotype (HLA-DR)) using flow cytometry analysis, and differentiation capability into three lineage cells was determined with red alcian blue, oil red O and alizarin staining.Results: The type culture of SM-MSCs was adherent and showed positive CD44, CD105, CD73, CD90 and negative of CD19, HLA-DR, CD11b, CD45, CD34 surface marker. Based on the result, SM-MSCs P3 showed differentiation potency into adipogenic, chondrogenic, and osteogenic lineage cells. The population doubling time of SM-MSCs has increased from P3 to P8. The population doubling time of SM-MSCs P3 was 1.69 days and SM-MSCs P8 was 3.64 days.Conclusion: The results indicated that SM-MCSCs from osteoarthritis patients are able to differentiate into osteocytes, chondrocytes, adipocytes and highly express of CD105, CD73, CD90, CD44 and negative for CD34, CD45, CD14, CD19.Keywords: synovial membrane, mesenchymal stromal cells, adipocyte, chondrocyte, osteocyte


Sign in / Sign up

Export Citation Format

Share Document