A water soluble nanostructured platinum (0) metal catalyst from platinum carbonyl molecular clusters: Synthesis, characterization and application in the selective hydrogenations of olefins, ketones and aldehydes

2007 ◽  
Vol 270 (1-2) ◽  
pp. 117-122 ◽  
Author(s):  
Prasenjit Maity ◽  
Susmit Basu ◽  
Sumit Bhaduri ◽  
Goutam Kumar Lahiri
2004 ◽  
Vol 6 (6) ◽  
pp. 1077 ◽  
Author(s):  
Shaoming Huang ◽  
Qiang Fu ◽  
Lei An ◽  
Jie Liu

2016 ◽  
Vol 18 (47) ◽  
pp. 32210-32221 ◽  
Author(s):  
Nathalie Mager ◽  
Wouter S. Lamme ◽  
Samuel Carlier ◽  
Sophie Hermans

Nanocarbon supported catalysts were prepared from water-soluble molecular clusters by pH controlled impregnations in order to probe the clusters/surface interactions and to maximize them.


Nanoscale ◽  
2020 ◽  
Vol 12 (21) ◽  
pp. 11435-11439
Author(s):  
Diogo A. Gálico ◽  
Jeffrey S. Ovens ◽  
Muralee Murugesu

Lanthanide molecular clusters as near-infrared markers are highly tunable owing to the bottom-up synthetic approach. Facile synthesis, high crystallinity, water stability are all highly desirable attributes of clusters for biological and telecommunications technology.


2013 ◽  
Vol 9 ◽  
pp. 960-965 ◽  
Author(s):  
Jorgen S Willemsen ◽  
Jan C M van Hest ◽  
Floris P J T Rutjes

Water-soluble dendritic iridium catalysts were synthesized by attaching a reactive metal complex to DAB-Am dendrimers via an adapted asymmetric bipyridine ligand. These dendritic catalysts were applied in the aqueous reductive amination of valine while contained in a dialysis bag. Comparable conversions were observed as for the noncompartmentalized counterparts, albeit with somewhat longer reaction times. These results clearly show that the encapsulated catalyst system is suitable to successfully drive a complex reaction mixture with various equilibrium reactions to completion.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Anshu Bhati ◽  
Anupriya Singh ◽  
Kumud Malika Tripathi ◽  
Sumit Kumar Sonkar

Water-soluble graphitic hollow carbon nanorods (wsCNRs) are exploited for their light-driven photochemical activities under outdoor sunlight. wsCNRs were synthesized by a simple pyrolysis method from castor seed oil, without using any metal catalyst or template. wsCNRs exhibited the light-induced photochemical degradation of methylene blue used as a model pollutant by the generation of singlet oxygen species. Herein, we described a possible degradation mechanism of methylene blue under the irradiation of visible photons via the singlet oxygen-superoxide anion pathway.


Author(s):  
J. G. Robertson ◽  
D. F. Parsons

The extraction of lipids from tissues during fixation and embedding for electron microscopy is widely recognized as a source of possible artifact, especially at the membrane level of cell organization. Lipid extraction is also a major disadvantage in electron microscope autoradiography of radioactive lipids, as in studies of the uptake of radioactive fatty acids by intestinal slices. Retention of lipids by fixation with osmium tetroxide is generally limited to glycolipids, phospholipids and highly unsaturated neutral lipids. Saturated neutral lipids and sterols tend to be easily extracted by organic dehydrating reagents prior to embedding. Retention of the more saturated lipids in embedded tissue might be achieved by developing new cross-linking reagents, by the use of highly water soluble embedding materials or by working at very low temperatures.


Author(s):  
J. D. McLean ◽  
S. J. Singer

The successful application of ferritin labeled antibodies (F-A) to ultrathin sections of biological material has been hampered by two main difficulties. Firstly the normally used procedures for the preparation of material for thin sectioning often result in a loss of antigenicity. Secondly the polymers employed for embedding may non-specifically absorb the F-A. Our earlier use of cross-linked polyampholytes as embedding media partially overcame these problems. However the water-soluble monomers used for this method still extract many lipids from the material.


Author(s):  
Alexis T. Bell

Heterogeneous catalysts, used in industry for the production of fuels and chemicals, are microporous solids characterized by a high internal surface area. The catalyticly active sites may occur at the surface of the bulk solid or of small crystallites deposited on a porous support. An example of the former case would be a zeolite, and of the latter, a supported metal catalyst. Since the activity and selectivity of a catalyst are known to be a function of surface composition and structure, it is highly desirable to characterize catalyst surfaces with atomic scale resolution. Where the active phase is dispersed on a support, it is also important to know the dispersion of the deposited phase, as well as its structural and compositional uniformity, the latter characteristics being particularly important in the case of multicomponent catalysts. Knowledge of the pore size and shape is also important, since these can influence the transport of reactants and products through a catalyst and the dynamics of catalyst deactivation.


Author(s):  
D.R. Mattie ◽  
J.W. Fisher

Jet fuels such as JP-4 can be introduced into the environment and come in contact with aquatic biota in several ways. Studies in this laboratory have demonstrated JP-4 toxicity to fish. Benzene is the major constituent of the water soluble fraction of JP-4. The normal surface morphology of bluegill olfactory lamellae was examined in conjunction with electrophysiology experiments. There was no information regarding the ultrastructural and physiological responses of the olfactory epithelium of bluegills to acute benzene exposure.The purpose of this investigation was to determine the effects of benzene on the surface morphology of the nasal rosettes of the bluegill sunfish (Lepomis macrochirus). Bluegills were exposed to a sublethal concentration of 7.7±0.2ppm (+S.E.M.) benzene for five, ten or fourteen days. Nasal rosettes were fixed in 2.5% glutaraldehyde and 2.0% paraformaldehyde in 0.1M cacodylate buffer (pH 7.4) containing 1.25mM calcium chloride. Specimens were processed for scanning electron microscopy.


Author(s):  
H. J. Arnott ◽  
M. A. Webb ◽  
L. E. Lopez

Many papers have been published on the structure of calcium oxalate crystals in plants, however, few deal with the early development of crystals. Large numbers of idioblastic calcium oxalate crystal cells are found in the leaves of Vitis mustangensis, V. labrusca and V. vulpina. A crystal idioblast, or raphide cell, will produce 150-300 needle-like calcium oxalate crystals within a central vacuole. Each raphide crystal is autonomous, having been produced in a separate membrane-defined crystal chamber; the idioblast''s crystal complement is collectively embedded in a water soluble glycoprotein matrix which fills the vacuole. The crystals are twins, each having a pointed and a bidentate end (Fig 1); when mature they are about 0.5-1.2 μn in diameter and 30-70 μm in length. Crystal bundles, i.e., crystals and their matrix, can be isolated from leaves using 100% ETOH. If the bundles are treated with H2O the matrix surrounding the crystals rapidly disperses.


Sign in / Sign up

Export Citation Format

Share Document