Type III interferon gene expression in response to influenza virus infection in chicken and duck embryonic fibroblasts

2015 ◽  
Vol 68 (2) ◽  
pp. 657-662 ◽  
Author(s):  
Zhijie Zhang ◽  
Tingting Zou ◽  
Xiaotong Hu ◽  
Hong Jin
mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Paul J. Planet ◽  
Dane Parker ◽  
Taylor S. Cohen ◽  
Hannah Smith ◽  
Justinne D. Leon ◽  
...  

ABSTRACT Much of the morbidity and mortality associated with influenza virus respiratory infection is due to bacterial coinfection with pathogens that colonize the upper respiratory tract such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae . A major component of the immune response to influenza virus is the production of type I and III interferons. Here we show that the immune response to infection with influenza virus causes an increase and restructuring of the upper respiratory microbiota in wild-type (WT) mice but not in Il28r −/− mutant mice lacking the receptor for type III interferon. Mice lacking the IL-28 receptor fail to induce STAT1 phosphorylation and expression of its regulator, SOCS1. Il28r −/− mutant mice have increased expression of interleukin-22 (IL-22), as well as Ngal and RegIIIγ, in the nasal cavity, the source of organisms that would be aspirated to cause pneumonia. Proteomic analysis reveals changes in several cytoskeletal proteins that contribute to barrier function in the nasal epithelium that may contribute to the effects of IL-28 signaling on the microbiota. The importance of the effects of IL-28 signaling in the pathogenesis of MRSA pneumonia after influenza virus infection was confirmed by showing that WT mice nasally colonized before or after influenza virus infection had significantly higher levels of infection in the upper airways, as well as significantly greater susceptibility to MRSA pneumonia than Il28r −/− mutant mice did. Our results suggest that activation of the type III interferon in response to influenza virus infection has a major effect in expanding the upper airway microbiome and increasing susceptibility to lower respiratory tract infection. IMPORTANCE S. aureus and influenza virus are important respiratory pathogens, and coinfection with these organisms is associated with significant morbidity and mortality. The ability of influenza virus to increase susceptibility to S. aureus infection is less well understood. We show here that influenza virus leads to a change in the upper airway microbiome in a type III interferon-dependent manner. Mice lacking the type III interferon receptor have altered STAT1 and IL-22 signaling. In coinfection studies, mice without the type III interferon receptor had significantly less nasal S. aureus colonization and subsequent pneumonia than infected WT mice did. This work demonstrates that type III interferons induced by influenza virus contribute to nasal colonization and pneumonia due to S. aureus superinfection.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Hui Cai ◽  
Meisui Liu ◽  
Charles J. Russell

ABSTRACTReporter viruses provide a powerful tool to study infection, yet incorporating a nonessential gene often results in virus attenuation and genetic instability. Here, we used directed evolution of a luciferase-expressing pandemic H1N1 (pH1N1) 2009 influenza A virus in mice to restore replication kinetics and virulence, increase the bioluminescence signal, and maintain reporter gene expression. An unadapted pH1N1 virus withNanoLuc luciferaseinserted into the 5′ end of the PA gene segment grew to titers 10-fold less than those of the wild type in MDCK cells and in DBA/2 mice and was less virulent. For 12 rounds, we propagated DBA/2 lung samples with the highest bioluminescence-to-titer ratios. Every three rounds, we comparedin vivoreplication, weight loss, mortality, and bioluminescence. Mouse-adapted virus after 9 rounds (MA-9) had the highest relative bioluminescence signal and had wild-type-like fitness and virulence in DBA/2 mice. Using reverse genetics, we discovered fitness was restored in virus rPB2-MA9/PA-D479N by a combination of PA-D479N and PB2-E158G amino acid mutations andPB2noncoding mutations C1161T and C1977T. rPB2-MA9/PA-D479N has increased mRNA transcription, which helps restore wild-type-like phenotypes in DBA/2 and BALB/c mice. Overall, the results demonstrate that directed evolution that maximizes foreign-gene expression while maintaining genetic stability is an effective method to restore wild-type-likein vivofitness of a reporter virus. Virus rPB2-MA9/PA-D479N is expected to be a useful tool for noninvasive imaging of pH1N1 influenza virus infection and clearance while analyzing virus-host interactions and developing new therapeutics and vaccines.IMPORTANCEInfluenza viruses contribute to 290,000 to 650,000 deaths globally each year. Infection is studied in mice to learn how the virus causes sickness and to develop new drugs and vaccines. During experiments, scientists have needed to euthanize groups of mice at different times to measure the amount of infectious virus in mouse tissues. By inserting a foreign gene that causes infected cells to light up, scientists could see infection spread in living mice. Unfortunately, adding an extra gene not needed by the virus slowed it down and made it weaker. Here, we used a new strategy to restore the fitness and lethality of an influenza reporter virus; we adapted it to mouse lungs and selected for variants that had the greatest light signal. The adapted virus can be used to study influenza virus infection, immunology, and disease in living mice. The strategy can also be used to adapt other viruses.


1998 ◽  
Vol 274 (1) ◽  
pp. L134-L142 ◽  
Author(s):  
Katharine Knobil ◽  
Augustine M. K. Choi ◽  
Gordon W. Weigand ◽  
David B. Jacoby

Influenza virus-induced epithelial damage may be mediated, in part, by reactive oxygen intermediates (ROIs). In this study, we investigated the role of ROIs in the influenza virus-induced gene expression of antioxidant enzymes and in the activation of nuclear factor-κB (NF-κB), an oxidant-sensitive transcriptional factor. Influenza virus infection increased production of intracellular ROIs in A549 pulmonary epithelial cells. Induction of manganese superoxide dismutase (MnSOD) mRNA correlated with increased MnSOD protein and enzyme activity. Influenza virus infection also activated NF-κB binding as determined by an electrophoretic mobility shift assay. Pretreatment of A549 cells with N-acetyl-l-cysteine attenuated virus-induced NF-κB activation and interleukin (IL)-8 mRNA induction but did not block induction of MnSOD mRNA. In contrast, pyrrolidine dithiocarbamate blocked activation of NF-κB and induction of MnSOD and IL-8 mRNAs. Treatment with pyrrolidine dithiocarbamate also markedly decreased virus-induced cell death. Thus oxidants are involved in influenza virus-induced activation of NF-κB, in the expression of IL-8 and MnSOD, and in virus-induced cell death.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Su-Jin Park ◽  
Mukesh Kumar ◽  
Hyeok-il Kwon ◽  
Rak-Kyun Seong ◽  
Kyudong Han ◽  
...  

2002 ◽  
Vol 11 (6) ◽  
pp. 359-361 ◽  
Author(s):  
Shinya Sakai ◽  
Naoki Mantani ◽  
Toshiaki Kogure ◽  
Hiroshi Ochiai ◽  
Yutaka Shimada ◽  
...  

Background: Influenza virus is a worldwide health problem with significant economic consequences. To study the gene expression pattern induced by influenza virus infection, it is useful to reveal the pathogenesis of influenza virus infection; but this has not been well examined, especiallyin vivostudy.Aims: To assess the influence of influenza virus infection on gene expression in mice, mRNA levels in the lung and tracheal tissue 48 h after infection were investigated by cDNA array analysis.Methods: Four-week-old outbred, specific pathogen free strain, ICR female mice were infected by intra-nasal inoculation of a virus solution under ether anesthesia. The mice were sacrificed 48 h after infection and the tracheas and lungs were removed. To determine gene expression, the membrane-based microtechnique with an Atlas cDNA expression array (mouse 1.2 array II) was performed in accordance with the manual provided.Results and conclusions: We focused on the expression of 46 mRNAs for cell surface antigens. Of these 46 mRNAs that we examined, four (CD1d2 antigen, CD39 antigen-like 1, CD39 antigen-like 3, CD68 antigen) were up-regulated and one (CD36 antigen) was down-regulated. Although further studies are required, these data suggest that these molecules play an important role in influenza virus infection, especially the phase before specific immunity.


2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Liang Zhang ◽  
Juan Wang ◽  
Raquel Muñoz-Moreno ◽  
Min Kim ◽  
Ramanavelan Sakthivel ◽  
...  

ABSTRACTThe NS1 protein of influenza A virus is a multifunctional virulence factor that inhibits cellular processes to facilitate viral gene expression. While NS1 is known to interact with RNA and proteins to execute these functions, the cellular RNAs that physically interact with NS1 have not been systematically identified. Here we reveal a NS1 protein-RNA interactome and show that NS1 primarily binds intronic sequences. Among this subset of pre-mRNAs is the RIG-I pre-mRNA, which encodes the main cytoplasmic antiviral sensor of influenza virus infection. This suggested that NS1 interferes with the antiviral response at a posttranscriptional level by virtue of its RNA binding properties. Indeed, we show that NS1 is necessary in the context of viral infection and sufficient upon transfection to decrease the rate of RIG-I intron removal. This NS1 function requires a functional RNA binding domain and is independent of the NS1 interaction with the cleavage and polyadenylation specificity factor CPSF30. NS1 has been previously shown to abrogate RIG-I-mediated antiviral immunity by inhibiting its protein function. Our data further suggest that NS1 also posttranscriptionally alters RIG-I pre-mRNA processing by binding to the RIG-I pre-mRNA.IMPORTANCEA key virulence factor of influenza A virus is the NS1 protein, which inhibits various cellular processes to facilitate viral gene expression. The NS1 protein is localized in the nucleus and in the cytoplasm during infection. In the nucleus, NS1 has functions related to inhibition of gene expression that involve protein-protein and protein-RNA interactions. While several studies have elucidated the protein interactome of NS1, we still lack a clear and systematic understanding of the NS1-RNA interactome. Here we reveal a nuclear NS1-RNA interactome and show that NS1 primarily binds intronic sequences within a subset of pre-mRNAs, including the RIG-I pre-mRNA that encodes the main cytoplasmic antiviral sensor of influenza virus infection. Our data here further suggest that NS1 is necessary and sufficient to impair intron processing of the RIG-I pre-mRNA. These findings support a posttranscriptional role for NS1 in the inhibition of RIG-I expression.


2016 ◽  
Vol 39 (12) ◽  
pp. 1912-1921 ◽  
Author(s):  
Noboru Uchide ◽  
Kyoko Obatake ◽  
Rie Yamada ◽  
Hidetaka Sadanari ◽  
Keiko Matsubara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document