airway microbiome
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 101)

H-INDEX

22
(FIVE YEARS 7)

2022 ◽  
Vol 53 (1) ◽  
Author(s):  
Jianmin Chai ◽  
Sarah F. Capik ◽  
Beth Kegley ◽  
John T. Richeson ◽  
Jeremy G. Powell ◽  
...  

AbstractBovine respiratory disease (BRD), as one of the most common and costly diseases in the beef cattle industry, has significant adverse impacts on global food security and the economic stability of the industry. The bovine respiratory microbiome is strongly associated with health and disease and may provide insights for alternative therapy when treating BRD. The niche-specific microbiome communities that colonize the inter-surface of the upper and the lower respiratory tract consist of a dynamic and complex ecological system. The correlation between the disequilibrium in the respiratory ecosystem and BRD has become a hot research topic. Hence, we summarize the pathogenesis and clinical signs of BRD and the alteration of the respiratory microbiota. Current research techniques and the biogeography of the microbiome in the healthy respiratory tract are also reviewed. We discuss the process of resident microbiota and pathogen colonization as well as the host immune response. Although associations between the microbiota and BRD have been revealed to some extent, interpreting the development of BRD in relation to respiratory microbial dysbiosis will likely be the direction for upcoming studies, which will allow us to better understand the importance of the airway microbiome and its contributions to animal health and performance.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kadi J. Horn ◽  
Alexander C. Jaberi Vivar ◽  
Vera Arenas ◽  
Sameer Andani ◽  
Edward N. Janoff ◽  
...  

The stability and composition of the airway microbiome is an important determinant of respiratory health. Some airway bacteria are considered to be beneficial due to their potential to impede the acquisition and persistence of opportunistic bacterial pathogens such as Streptococcus pneumoniae. Among such organisms, the presence of Corynebacterium species correlates with reduced S. pneumoniae in both adults and children, in whom Corynebacterium abundance is predictive of S. pneumoniae infection risk. Previously, Corynebacterium accolens was shown to express a lipase which cleaves host lipids, resulting in the production of fatty acids that inhibit growth of S. pneumoniae in vitro. However, it was unclear whether this mechanism contributes to Corynebacterium-S. pneumoniae interactions in vivo. To address this question, we developed a mouse model for Corynebacterium colonization in which colonization with either C. accolens or another species, Corynebacterium amycolatum, significantly reduced S. pneumoniae acquisition in the upper airway and infection in the lung. Moreover, the lungs of co-infected mice had reduced pro-inflammatory cytokines and inflammatory myeloid cells, indicating resolution of infection-associated inflammation. The inhibitory effect of C. accolens on S. pneumoniae in vivo was mediated by lipase-dependent and independent effects, indicating that both this and other bacterial factors contribute to Corynebacterium-mediated protection in the airway. We also identified a previously uncharacterized bacterial lipase in C. amycolatum that is required for inhibition of S. pneumoniae growth in vitro. Together, these findings demonstrate the protective potential of airway Corynebacterium species and establish a new model for investigating the impact of commensal microbiota, such as Corynebacterium, on maintaining respiratory health.


2021 ◽  
Vol 8 ◽  
Author(s):  
Huifen Wang ◽  
Haiyu Wang ◽  
Ying Sun ◽  
Zhigang Ren ◽  
Weiwei Zhu ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has plunged the world into a major crisis. The disease is characterized by strong infectivity, high morbidity, and high mortality. It is still spreading in some countries. Microbiota and their metabolites affect human physiological health and diseases by participating in host digestion and nutrition, promoting metabolic function, and regulating the immune system. Studies have shown that human microecology is associated with many diseases, including COVID-19. In this research, we first reviewed the microbial characteristics of COVID-19 from the aspects of gut microbiome, lung microbime, and oral microbiome. We found that significant changes take place in both the gut microbiome and airway microbiome in patients with COVID-19 and are characterized by an increase in conditional pathogenic bacteria and a decrease in beneficial bacteria. Then, we summarized the possible microecological mechanisms involved in the progression of COVID-19. Intestinal microecological disorders in individuals may be involved in the occurrence and development of COVID-19 in the host through interaction with ACE2, mitochondria, and the lung-gut axis. In addition, fecal bacteria transplantation (FMT), prebiotics, and probiotics may play a positive role in the treatment of COVID-19 and reduce the fatal consequences of the disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chih-Yung Chiu ◽  
Mei-Ling Cheng ◽  
Meng-Han Chiang ◽  
Chia-Jung Wang ◽  
Ming-Han Tsai ◽  
...  

AbstractA metabolomics-based approach to address the molecular mechanism of childhood asthma with immunoglobulin E (IgE) or allergen sensitization related to microbiome in the airways remains lacking. Fifty-three children with lowly sensitized non-atopic asthma (n = 15), highly sensitized atopic asthma (n = 13), and healthy controls (n = 25) were enrolled. Blood metabolomic analysis with 1H-nuclear magnetic resonance (NMR) spectroscopy and airway microbiome composition analysis by bacterial 16S rRNA sequencing were performed. An integrative analysis of their associations with allergen-specific IgE levels for lowly and highly sensitized asthma was also assessed. Four metabolites including tyrosine, isovalerate, glycine, and histidine were uniquely associated with lowly sensitized asthma, whereas one metabolite, acetic acid, was strongly associated with highly sensitized asthma. Metabolites associated with highly sensitized asthma (valine, isobutyric acid, and acetic acid) and lowly sensitized asthma (isovalerate, tyrosine, and histidine) were strongly correlated each other (P < 0.01). Highly sensitized asthma associated metabolites were mainly enriched in pyruvate and acetyl-CoA metabolisms. Metabolites associated with highly sensitized atopic asthma were mostly correlated with microbiota in the airways. Acetic acid, a short-chain fatty acid (SCFA), was negatively correlated with the genus Atopobium (P < 0.01), but positively correlated with the genus Fusobacterium (P < 0.05). In conclusion, metabolomics reveals microbes-related metabolic pathways associated with IgE responses to house dust mite allergens in childhood asthma. A strong correlation of metabolites related to highly sensitized atopic asthma with airway microbiota provides linkages between the host–microbial interactions and asthma endotypes.


2021 ◽  
Author(s):  
Keiko M. Tarquinio ◽  
Todd Karsies ◽  
Steven L. Shein ◽  
Andrew Beardsley ◽  
Robinder Khemani ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rune Nielsen ◽  
Yaxin Xue ◽  
Inge Jonassen ◽  
Ingvild Haaland ◽  
Øyvind Kommedal ◽  
...  

Abstract Objective Little is known concerning the stability of the lower airway microbiome. We have compared the microbiota identified by repeated bronchoscopy in healthy subjects and patients with ostructive lung diseaseases (OLD). Methods 21 healthy controls and 41 patients with OLD completed two bronchoscopies. In addition to negative controls (NCS) and oral wash (OW) samples, we gathered protected bronchoalveolar lavage in two fractions (PBAL1 and PBAL2) and protected specimen brushes (PSB). After DNA extraction, we amplified the V3V4 region of the 16S rRNA gene, and performed paired-end sequencing (Illumina MiSeq). Initial bioinformatic processing was carried out in the QIIME-2 pipeline, identifying amplicon sequence variants (ASVs) with the DADA2 algorithm. Potentially contaminating ASVs were identified and removed using the decontam package in R and the sequenced NCS. Results A final table of 551 ASVs consisted of 19 × 106 sequences. Alpha diversity was lower in the second exam for OW samples, and borderline lower for PBAL1, with larger differences in subjects not having received intercurrent antibiotics. Permutational tests of beta diversity indicated that within-individual changes were significantly lower than between-individual changes. A non-parametric trend test showed that differences in composition between the two exams (beta diversity) were largest in the PSBs, and that these differences followed a pattern of PSB > PBAL2 > PBAL1 > OW. Time between procedures was not associated with increased diversity. Conclusion The airways microbiota varied between examinations. However, there is compositional microbiota stability within a person, beyond that of chance, supporting the notion of a transient airways microbiota with a possibly more stable individual core microbiome.


2021 ◽  
Vol 20 ◽  
pp. S213
Author(s):  
J. O’Connor ◽  
B. Wagner ◽  
J. Harris ◽  
C. Robertson ◽  
T. Laguna

Author(s):  
Sang Chul Park ◽  
Il-Ho Park ◽  
Joong Seob Lee ◽  
Sung Min Park ◽  
Sung Hun Kang ◽  
...  

The sinonasal microbiota in human upper airway may play an important role in chronic rhinosinusitis (CRS). Thus, this study aimed to investigate the human upper airway microbiome in patients with unilateral CRS, and compare the sinonasal microbiome of the unilateral diseased site with that of a contralateral healthy site. Thirty samples, 15 each from the diseased and healthy sites, were collected from the middle meatus and/or anterior ethmoid region of 15 patients with unilateral CRS during endoscopic sinus surgery. DNA extraction and bacterial microbiome analysis via 16S rRNA gene sequencing were then performed. Corynebacterium showed the highest relative abundance, followed by Staphylococcus in samples from both the diseased and healthy sites. Further, the relative abundances of Staphylococcus and Pseudomonas were significantly lower in samples from diseased sites than in those from healthy sites. Conversely, anaerobes, including Fusobacterium, Bacteroides, and Propionibacterium, were abundantly present in samples from both sites, more so in samples from diseased sites. However, the sites showed no significant difference with respect to richness or diversity (p > 0.05). Our results indicate that CRS might be a polymicrobial infection, and also suggest that Corynebacterium and Staphylococcus may exist as commensals on the sinus mucosal surface in the upper respiratory tract.


Sign in / Sign up

Export Citation Format

Share Document