Micro-second response time in near isotropic phase liquid crystal at room-temperature

2016 ◽  
Vol 218 ◽  
pp. 342-345 ◽  
Author(s):  
Suman k. Manna ◽  
K. Sathaye ◽  
Laurent Dupont
Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 884 ◽  
Author(s):  
Xuan Li ◽  
Xiaowei Du ◽  
Peiyun Guo ◽  
Jiliang Zhu ◽  
Wenjiang Ye ◽  
...  

We demonstrated a fast switchable dual-model grating based on a polymer-stabilized sphere phase liquid crystal. To form binary periodicity layers, the polymer-stabilized sphere phase liquid crystal precursor was sequence ultraviolet cured at an isotropic and sphere phase. This grating jointly modulated both the phase and the amplitude, had six times the diffraction efficiency of that fabricated with polymer-stabilized blue phase liquid crystal. Moreover, the dual-model tunable grating shown polarization-independent and submillisecond response time, which may hold a great potential application in diffractive optics.


2017 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Jose Francisco Algorri ◽  
Virginia Urruchi ◽  
Noureddine Bennis ◽  
Jose Manuel Sanchez-Pena

Nematic liquid crystal (LC)-based beam steering has been reported for wide applications. However, for conventional nematic LC beam steering the thickness is of several microns in order to have a wider deflection angle. The response time is relatively slow and the diffraction efficiency is low. In this work, novel beam steering based on polymer stabilized blue phase liquid crystal (PS-BPLC) has been designed and theoretically analyzed. This special mesophase of the chiral doped nematic LC has several advantageous characteristics, for example no need for alignment layers, microsecond response time and an isotropic voltage-off state. The results reveal control over phase retardation. The direction of the steered beam can be tuned by voltage. Depending on voltage configuration, either diffractive beam steering (0.5deg deviation for 1st order) or a tunable continuous phase (tunable deviation of 0.002deg) can be obtained. In the first case, the deflection angle could be tuned by stacks of samples. The second option has the same phase shift for the TE and TM modes so unpolarized light could be used. Full Text: PDF ReferencesF. Feng, I. White, T. Wilkinson, "Free Space Communications With Beam Steering a Two-Electrode Tapered Laser Diode Using Liquid-Crystal SLM", J. Lightwave Technol. 31, 2001 (2013). CrossRef E. Oton, J. Perez-Fernandez, D. Lopez-Molina, X. Quintana, J.M. Oton, M.A. Geday, "Reliability of Liquid Crystals in Space Photonics", IEEE Photonics Journal 7, 1 (2015). CrossRef J. Stockley, S. Serati, "Multi-access laser terminal using liquid crystal beam steering", IEEE in Aerospace Conference, 1972 (2005). CrossRef D. Zografopoulos and E. Kriezis, "Switchable beam steering with zenithal bistable liquid-crystal blazed gratings", Opt. Lett. 39, 5842 (2014). CrossRef Benedikt Scherger, et al., "Discrete Terahertz Beam Steering with an Electrically Controlled Liquid Crystal Device", J. Infrared. Millim. Terahertz Waves 33, 1117 (2012). CrossRef M.A. Geday, X. Quintana, E. Otón, B. Cerrolaza, D. Lopez, F. Garcia de Quiro, I. Manolis, A. Short, Proc. ICSO, Rhodes, Greece, pp. 1-4 (2010). CrossRef Y. Chen, S.-T. Wu, "The outlook for blue-phase LCDs", Proc. SPIE 9005, Advances in Display Technologies IV, 900508 (2014). CrossRef G.D. Love, A.F. Naumov, "Modal liquid crystal lenses", Liq. Cryst. Today 10, 1 (2000). CrossRef V. Urruchi, J.F. Algorri, J.M. Sánchez-Pena, M.A. Geday, X. Quintana, N. Bennis, "Lenticular Arrays Based on Liquid Crystals", Opto-Electron. Rev. 20, 38 (2012). CrossRef J.F. Algorri, G. Love, and V. Urruchi, "Modal liquid crystal array of optical elements", Opt. Express 21, 24809 (2013). CrossRef J.F. Algorri, V. Urruchi, N. Bennis, J. Sánchez-Pena, "Modal liquid crystal microaxicon array", Opt. Lett. 39, 3476 (2014). CrossRef J.F. Algorri, V. Urruchi, B. Garcia-Camara, J.M. Sánchez-Pena, "Generation of Optical Vortices by an Ideal Liquid Crystal Spiral Phase Plate", IEEE Elect. Dev. Lett. 35, 856 (2014). CrossRef D. Xu, Y. Chen, Y. Liu, S. Wu, "Refraction effect in an in-plane-switching blue phase liquid crystal cell", Opt. Express 21, 24721 (2013). CrossRef Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.T. Wu, "Electro-optics of polymer-stabilized blue phase liquid crystal displays", Appl. Phys. Lett. 94 101104 (2009). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef X. Wang, D. Wilson, R. Muller, P. Maker, D. Psaltis, "Liquid-crystal blazed-grating beam deflector, Appl. Opt. 39, 6545 (2000). CrossRef


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 626
Author(s):  
Vladimir Chigrinov ◽  
Jiatong Sun ◽  
Mikhail M. Kuznetsov ◽  
Victor Belyaev ◽  
Denis Chausov

Optically driven liquid crystal displays (ODLCDs) realizes their display function by tuning the easy axis of liquid crystal (LC) molecules under polarized blue light, which has been utilized in some optical devices due to its advantages of ultra-low power consumption. However, a big issue arises in response time, i.e., the rewriting time of the ODLCD. The rewriting time of ODLCD samples was studied. Rotational viscosity plays a very important role for decreasing the rewriting time of the ODLCD. The operating temperature was changed from room temperature to nearly clearing point, the rewriting time decreased a lot as the rotational viscosity decreased for the five different kinds of the LCs. The rewriting time can be decreased from 5.2 s to 0.2 s around 25 times for the LC N4.


2014 ◽  
Vol 1698 ◽  
Author(s):  
Thomas M. Cooper ◽  
Aaron R. Burke ◽  
Douglas M. Krein ◽  
Ronald F. Ziolo ◽  
Eduardo Arias ◽  
...  

ABSTRACTTo prepare cholesteric liquid crystalline nonlinear optical materials with ability to be vitrified on cooling and form long time stability cholesteric glasses at room temperature, a series of platinum acetylide complexes modified with cholesterol has been synthesized. The materials synthesized have the formula trans-Pt(PR3)(cholesterol (3 or 4)-ethynyl benzoate)(1-ethynyl-4-X-benzene), where R = Et, Bu or Oct and X = H, F, OCH3 and CN. A cholesteric liquid crystal phase was observed in the complexes R = Et, and X = F, OCH3 and CN but not in any of the other complexes. When X = CN, a cholesteric glass was observed at room temperature which remained stable up to 130 °C, then converted to a mixed crystalline/cholesteric phase and completely melted to an isotropic phase at 230 °C. When X = F or OCH3 the complexes were crystalline at room temperature with conversion to the cholesteric phase upon heating to 190 and 230 °C, respectively. In the series X = CN, OCH3 and F, the cholesteric pitch was determined to be 1.7, 3.4 and 9.0 µ, respectively.


2003 ◽  
Vol 12 (02) ◽  
pp. 277-289 ◽  
Author(s):  
I. C. Khoo ◽  
Andres Diaz ◽  
J. Ding ◽  
K. Chen ◽  
Y. Zhang

This review will examine the origins of nonlinear light scattering processes in nematic liquid crystals, and explore various nonlinear photonic processes associated with optically induced director axis reorientation effects. Our theoretical prediction shows that the upper limit of nematic liquid crystal reorientation nonlinearity can be as high as 1000 cm2/W. The supra-nonlinear responses of nematic liquid crystals enable various self-action or electro-optical guiding, mixing, switching and modulation of light with unprecedented low power thresholds. Owing to the broadband birefringence of NLC, we expect to realize optical elements/devices capable of similar multi-functional operations throughout the visible — infrared regime. We also discuss the optical limiting action of isotropic-phase liquid crystal filled nonlinear fiber arrays.


2010 ◽  
Vol 6 (2) ◽  
pp. 49-51 ◽  
Author(s):  
Kuan-Ming Chen ◽  
Sebastian Gauza ◽  
Haiqing Xianyu ◽  
Shin-Tson Wu

Sign in / Sign up

Export Citation Format

Share Document