scholarly journals Study of metal-lipopeptide complexes and their self-assembly behavior, micelle formation, interaction with bovine serum albumin and biological properties

2018 ◽  
Vol 268 ◽  
pp. 743-753 ◽  
Author(s):  
Tomasz Janek ◽  
Lígia R. Rodrigues ◽  
Żaneta Czyżnikowska
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Sergio-Miguel Acuña-Nelson ◽  
José-Miguel Bastías-Montes ◽  
Fabiola-Rossana Cerda-Leal ◽  
Julio-Enrique Parra-Flores ◽  
Juan-Salvador Aguirre-García ◽  
...  

Protein adsorption is influenced by many factors such as temperature, pH, protein size and structure, or surface energy and roughness, among others. Self-assembled monolayers (SAMs) and the Langmuir-Blodgett (LB) technique are two of the techniques more used to produces ultrathin films of proteins on surfaces. In this work, we established protocols for the preparation of nanocoatings of bovine serum albumin (BSA) protein on glass surface using SAMs and LB. Furthermore, we determined how small changes in temperature and pH can affect the covering when SAMs are used. Using a combination of different analyses, such as relative roughness, dynamic contact angles, and atomic force microscopy (AFM), it was possible to establish conditions to obtain a uniform nanocoating using SAMs. The results of the analysis of the nanocoating performed using the LB technique were very similar to those obtained using SAMs. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory in conjunction with the AFM images showed that electrostatic interactions are very important in the self-assembly process, but a process dominated solely by attraction is not sufficient to achieve a good SAM nanocoating, since it does not allow proper orientation and packaging of BSA molecules on the glass surface.


RSC Advances ◽  
2016 ◽  
Vol 6 (95) ◽  
pp. 92349-92359
Author(s):  
Shivnetra Saha ◽  
Rupali Shekhawat ◽  
Shashank Deep

An unusual phenomenon in the aggregation profile of BSA in the presence of CTAB, brought about by stirring, is reported here.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Chenyu Su ◽  
Shanshan Liu ◽  
Shenghan Cao ◽  
Shuyan Yin ◽  
Chenggang Zhou ◽  
...  

Abstract Background Trunk-boring pests (TBPs) are an important type of forest pest, TBPs not only feed on the branches and trunks of trees, but also spread quarantine diseases in forests. However, because the larvae of TBPs live inside the trunk and are well concealed, prevention and control are difficult. The lack of effective control methods leads to the death of many trees in forests. In this study, a novel nanopesticide featuring high bioactivity and slow-release properties was developed to control TBPs. Thiacloprid (THI), which is commonly used to control Coleoptera species, was used as a model pesticide. Results The oleophobic properties of bovine serum albumin (BSA) were exploited to encapsulate the hydrophobic pesticide THI by self-assembly, and the size of the obtained nanoparticles, THI@BSA·NPs, was approximately 23 nm. The loading efficiency reached 70.4%, and THI@BSA·NPs could be released continuously for over 15 days, with the cumulative release reaching 93.5%. The fluorescein isothiocyanate (FITC)-labeled nanoparticles were evenly distributed in the digestive tract and body surface of a typical TBPs, M. alternatus, and the stomach and contact toxicities increased by 33.7% and 25.9%, respectively, compared with those of free THI. Furthermore, the results showed that the transport efficiency of THI@BSA·NPs was highest at a concentration of 50 μg/mL, and the THI@BSA·NPs content in the trunk, from to lower to higher layers, was 8.8, 8.2, 7.6, and 5.8 μg/g. At the same time, THI@BSA·NPs also exhibited high transport efficiency in dead trees. Conclusion The transport efficiency and toxicity of the active ingredients are the key factors for the control of TBPs. This work provided idea for the application of biological delivery system encapsulated hydrophobic pesticides. The novel self-assembled THI@BSA·NPs have promising potential for sustainable control of TBPs.


2020 ◽  
Author(s):  
Chenyu Su ◽  
Shanshan Liu ◽  
Shenghan Cao ◽  
Shuyan Yin ◽  
Chenggang Zhou ◽  
...  

Abstract Trunk-boring pests (TBPs) are an important type of forest pest, TBPs not only feed on the branches and trunks of trees, but also spread quarantine diseases in forests. However, because the larvae of TBPs live inside the trunk and are well concealed, prevention and control are difficult. The lack of effective control methods leads to the death of many trees in forests. In this study, a novel nanopesticide featuring high bioactivity and slow-release properties was developed to control TBPs. Thiacloprid (THI), which is commonly used to control Coleoptera species, was used as a model pesticide. The oleophobic properties of bovine serum albumin (BSA) were exploited to encapsulate the hydrophobic pesticide THI by self-assembly, and the size of the obtained nanoparticles, THI@BSA·NPs, was approximately 23 nm. The loading efficiency reached 70.4%, and THI@BSA·NPs could be released continuously for over 15 d, with the cumulative release reaching 93.5%. The fluorescein isothiocyanate (FITC)-labeled nanoparticles were evenly distributed in the digestive tract and body surface of a typical TBP, M. alternatus , and the stomach and contact toxicities increased by 33.7% and 25.9%,respectively, compared with those of free THI. Furthermore, the results showed that the transport efficiency of THI@BSA·NPs was highest at a concentration of 50 μg/mL, and the THI@BSA·NPs content in the trunk, from to lower to higher layers, was 8.8, 8.2, 7.6, and 5.8 μg/g. At the same time, THI@BSA·NPs also exhibited high transport efficiency in dead trees. The results suggested that these novel self-assembled THI@BSA·NPs have promising potential for sustainable control of TBPs.


Sign in / Sign up

Export Citation Format

Share Document