Adsorption characteristics and thermodynamic property fields of polymerized ionic liquid and polyvinyl alcohol based composite/CO2 pairs

2019 ◽  
Vol 294 ◽  
pp. 111555 ◽  
Author(s):  
Kaiser Ahmed Rocky ◽  
Animesh Pal ◽  
Muhammad Moniruzzaman ◽  
Bidyut Baran Saha
Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 126 ◽  
Author(s):  
Shayeste Shajari ◽  
Elaheh Kowsari ◽  
Naemeh Seifvand ◽  
Farshad Boorboor Ajdari ◽  
Amutha Chinnappan ◽  
...  

In this work, the PIL (poly ionic liquid)@TiO2 composite was designed with two polymerized ionic liquid concentrations (low and high) and evaluated for pollutant degradation activity for benzene and toluene. The results showed that PIL (low)@TiO2 composite was more active than PIL (high)@TiO2 composites. The photodegradation rate of benzene and toluene pollutants by PIL (low)@TiO2 and PIL (high)@TiO2 composites was obtained as 86% and 74%, and 59% and 46%, respectively, under optimized conditions. The bandgap of TiO2 was markedly lowered (3.2 eV to 2.2 eV) due to the formation of PIL (low)@TiO2 composite. Besides, graphene oxide (GO) was used to grow the nano-photocatalysts’ specific surface area. The as-synthesized PIL (low)@TiO2@GO composite showed higher efficiency for benzene and toluene degradation which corresponds to 91% and 83%, respectively. The resultant novel hybrid photocatalyst (PIL@TiO2/m-GO) was prepared and appropriately characterized for their microstructural, morphology, and catalytic properties. Among the studied photocatalysts, the PIL (low)@TiO2@m-GO composite exhibits the highest activity in the degradation of benzene (97%) and toluene (97%). The ultimate bandgap of the composite reached 2.1 eV. Our results showed that the as-prepared composites hold an essential role for future considerations over organic pollutants.


2014 ◽  
Vol 2 (21) ◽  
pp. 7967-7972 ◽  
Author(s):  
Brian J. Adzima ◽  
Surendar R. Venna ◽  
Steven S. Klara ◽  
Hongkun He ◽  
Mingjiang Zhong ◽  
...  

A robust and orthogonal approach to access modular block-copolymer poly(ionic liquid)s.


RSC Advances ◽  
2016 ◽  
Vol 6 (30) ◽  
pp. 25311-25318 ◽  
Author(s):  
Yi Yang ◽  
Na Sun ◽  
Panpan Sun ◽  
Liqiang Zheng

The conductivity of AAEMs can be improved by building the ionic channel based on bis-imidazolium-based poly(ionic liquid).


Sign in / Sign up

Export Citation Format

Share Document