polymerized ionic liquid
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 26)

H-INDEX

30
(FIVE YEARS 5)

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1772
Author(s):  
Arisa Yokokoji ◽  
Wakana Kitayama ◽  
Kamonthira Wichai ◽  
Osamu Urakawa ◽  
Atsushi Matsumoto ◽  
...  

Polymerized ionic liquids (PILs) doped with lithium salts have recently attracted research interests as the polymer component in lithium-ion batteries because of their high ionic mobilities and lithium-ion transference numbers. To date, although the ion transport mechanism in lithium-doped PILs has been considerably studied, the role of lithium salts on the dynamics of PIL chains remains poorly understood. Herein, we examine the thermal and rheological behaviors of the mixture of poly(1-butyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide (PC4-TFSI)/lithium TFSI (LiTFSI) in order to clarify the effect of the addition of LiTFSI. We show that the glass transition temperature Tg and the entanglement density decrease with the increase in LiTFSI concentration wLiTFSI. These results indicate that LiTFSI acts as a plasticizer for PC4-TFSI. Comparison of the frequency dependence of the complex modulus under the iso-frictional condition reveals that the addition of LiTFSI does not modify the stress relaxation mechanism of PC4-TFSI, including its characteristic time scale. This suggests that the doped LiTFSI, component that can be carrier ions, is not so firmly bound to the polymer chain as it modifies the chain dynamics. In addition, a broadening of the loss modulus spectrum in the glass region occurs at high wLiTFSI. This change in the spectrum can be caused by the responses of free TFSI and/or coordination complexes of Li and TFSI. Our detailed rheological analysis can extract the information of the dynamical features for PIL/salt mixtures and may provide helpful knowledge for the control of mechanical properties and ion mobilities in PILs.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 126 ◽  
Author(s):  
Shayeste Shajari ◽  
Elaheh Kowsari ◽  
Naemeh Seifvand ◽  
Farshad Boorboor Ajdari ◽  
Amutha Chinnappan ◽  
...  

In this work, the PIL (poly ionic liquid)@TiO2 composite was designed with two polymerized ionic liquid concentrations (low and high) and evaluated for pollutant degradation activity for benzene and toluene. The results showed that PIL (low)@TiO2 composite was more active than PIL (high)@TiO2 composites. The photodegradation rate of benzene and toluene pollutants by PIL (low)@TiO2 and PIL (high)@TiO2 composites was obtained as 86% and 74%, and 59% and 46%, respectively, under optimized conditions. The bandgap of TiO2 was markedly lowered (3.2 eV to 2.2 eV) due to the formation of PIL (low)@TiO2 composite. Besides, graphene oxide (GO) was used to grow the nano-photocatalysts’ specific surface area. The as-synthesized PIL (low)@TiO2@GO composite showed higher efficiency for benzene and toluene degradation which corresponds to 91% and 83%, respectively. The resultant novel hybrid photocatalyst (PIL@TiO2/m-GO) was prepared and appropriately characterized for their microstructural, morphology, and catalytic properties. Among the studied photocatalysts, the PIL (low)@TiO2@m-GO composite exhibits the highest activity in the degradation of benzene (97%) and toluene (97%). The ultimate bandgap of the composite reached 2.1 eV. Our results showed that the as-prepared composites hold an essential role for future considerations over organic pollutants.


2020 ◽  
Vol 6 (26) ◽  
pp. eaba7952
Author(s):  
Rajeev Kumar ◽  
Jyoti P. Mahalik ◽  
Kevin S. Silmore ◽  
Zaneta Wojnarowska ◽  
Andrew Erwin ◽  
...  

Electrode-polymer interfaces dictate many of the properties of thin films such as capacitance, the electric field experienced by polymers, and charge transport. However, structure and dynamics of charged polymers near electrodes remain poorly understood, especially in the high concentration limit representative of the melts. To develop an understanding of electric field–induced transformations of electrode-polymer interfaces, we have studied electrified interfaces of an imidazolium-based polymerized ionic liquid (PolyIL) using combinations of broadband dielectric spectroscopy, specular neutron reflectivity, and simulations based on the Rayleigh’s dissipation function formalism. Overall, we obtained the camel-shaped dependence of the capacitance on applied voltage, which originated from the responses of an adsorbed polymer layer to applied voltages. This work provides additional insights related to the effects of molecular weight in affecting structure and properties of electrode-polymer interfaces, which are essential for designing next-generation energy storage and harvesting devices.


2020 ◽  
Vol 167 (7) ◽  
pp. 070525 ◽  
Author(s):  
Tiago C. Mendes ◽  
Nicolas Goujon ◽  
Nino Malic ◽  
Almar Postma ◽  
John Chiefari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document