Activation energy for the Carreau-Yasuda nanomaterial flow: Analysis of the entropy generation over a porous medium

2020 ◽  
Vol 297 ◽  
pp. 111905 ◽  
Author(s):  
M. Ijaz Khan ◽  
Sidra Afzal ◽  
T. Hayat ◽  
M. Waqas ◽  
A. Alsaedi
2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110065
Author(s):  
Hu Ge-JiLe ◽  
Sumaira Qayyum ◽  
Faisal Shah ◽  
M Ijaz Khan ◽  
Sami Ullah Khan

The growing development in the thermal engineering and nano-technology, much attention has been paid on the thermal properties of nanoparticles which convey many applications in industrial, technological and medical era of sciences. The noteworthy applications of nano-materials included heat transfer enhancement, thermal energy, solar systems, cooling of electronics, controlling the heat mechanisms etc. Beside this, entropy generation is an optimized scheme which reflects significances in thermodynamics systems to control the higher energy efficiency. On this end, present work presents the slip flow of Jeffrey nanofluid over a stretching sheet with applications of activation energy and viscous dissipation. The entropy generation features along with Bejan number significance is also addressed in present analysis. Buongiorno model of nanofluid is used to discuss the heat and mass transfer. The formulated flow equations are attained into non-dimensional form. An appropriate ND MATHEMATICA built-in scheme is used to find the solution. The solution confirmation is verified by performing the error analysis. For developed flow model and impacted parameters, a comprehensive graphical analysis is performed. It is observed that slip phenomenon is used to decays the velocity profile. Temperature and concentration are in direct relation with Brownian motion parameter and activation energy respectively. Entropy and Bejan number have same results for greater diffusion parameter.


2005 ◽  
Vol 127 (1) ◽  
pp. 136-144 ◽  
Author(s):  
Yahya Dogu

The flow behavior through a brush seal has been investigated by developing a flow analysis procedure with a porous medium approach. In order to increase the brush seal performance and use at more severe operating conditions, the complex flow in the bristle pack has become the major concern affecting seal features such as blow-down, hang-up, hysteresis, and bristle flutter. In this study, an axisymmetric CFD model is employed to calibrate anisotropic permeability coefficients for the bristle pack based on available experimental data: leakage, axial pressure on the rotor surface, and radial pressure on the backing plate. A simplified form of the force balance equation is introduced for the flow in the porous bristle pack. Different sets of permeability coefficients are defined for the fence height region below the seal backing plate and the upper region of the seal to correlate the different physical structures and behavior of these regions during operation. The upper region is subject to more stiffening due to backing plate support while the fence height region is free to spread and bend in the axial direction. It is found that flow resistance for the upper region should be 20% higher than the fence height region in order to match the experimental pressure within the bristle pack. Analysis results prove that the brush seal is well represented as a porous medium with this approach. Based on the model developed, characteristic flow and pressure fields in the entire bristle pack have been explored.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal M. Abdel-Rahman Rashed

Chemical entropy generation and magnetohydrodynamic effects on the unsteady heat and fluid flow through a porous medium have been numerically investigated. The entropy generation due to the use of a magnetic field and porous medium effects on heat transfer, fluid friction, and mass transfer have been analyzed numerically. Using a similarity transformation, the governing equations of continuity, momentum, and energy and concentration equations, of nonlinear system, were reduced to a set of ordinary differential equations and solved numerically. The effects of unsteadiness parameter, magnetic field parameter, porosity parameter, heat generation/absorption parameter, Lewis number, chemical reaction parameter, and Brinkman number parameter on the velocity, the temperature, the concentration, and the entropy generation rates profiles were investigated and the results were presented graphically.


Sign in / Sign up

Export Citation Format

Share Document