scholarly journals Slip flow of Jeffrey nanofluid with activation energy and entropy generation applications

2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110065
Author(s):  
Hu Ge-JiLe ◽  
Sumaira Qayyum ◽  
Faisal Shah ◽  
M Ijaz Khan ◽  
Sami Ullah Khan

The growing development in the thermal engineering and nano-technology, much attention has been paid on the thermal properties of nanoparticles which convey many applications in industrial, technological and medical era of sciences. The noteworthy applications of nano-materials included heat transfer enhancement, thermal energy, solar systems, cooling of electronics, controlling the heat mechanisms etc. Beside this, entropy generation is an optimized scheme which reflects significances in thermodynamics systems to control the higher energy efficiency. On this end, present work presents the slip flow of Jeffrey nanofluid over a stretching sheet with applications of activation energy and viscous dissipation. The entropy generation features along with Bejan number significance is also addressed in present analysis. Buongiorno model of nanofluid is used to discuss the heat and mass transfer. The formulated flow equations are attained into non-dimensional form. An appropriate ND MATHEMATICA built-in scheme is used to find the solution. The solution confirmation is verified by performing the error analysis. For developed flow model and impacted parameters, a comprehensive graphical analysis is performed. It is observed that slip phenomenon is used to decays the velocity profile. Temperature and concentration are in direct relation with Brownian motion parameter and activation energy respectively. Entropy and Bejan number have same results for greater diffusion parameter.

2020 ◽  
Vol 34 (33) ◽  
pp. 2050383
Author(s):  
Sumaira Qayyum ◽  
M. Ijaz Khan ◽  
Wathek Chammam ◽  
W. A. Khan ◽  
Zulfiqar Ali ◽  
...  

Here our purpose is to explore the entropy generation in nanofluid MHD flow by curved stretching sheet; second-order slip is considered. Additional effects of viscous dissipation, Joule heating, and activation energy are taken. Temperature and concentration boundary conditions are considered convectively. For convergence of series solution NDSolve MATHEMATICA is used. Velocity, Bejan number, concentration, temperature, and entropy generation graphs are sketched for important parameters. For greater estimations of first- and second-order velocity slip parameters fluid velocity reduces. The thermal and solutal Biot numbers enhance the temperature and concentration, respectively. The concentration also has direct relation with activation energy. Entropy generation reduces for chemical reaction parameter and first- and second-order slip parameters.


2020 ◽  
Vol 8 ◽  
Author(s):  
K. Loganathan ◽  
G. Muhiuddin ◽  
A. M. Alanazi ◽  
Fehaid S. Alshammari ◽  
Bader M. Alqurashi ◽  
...  

The prime objective of this article is to explore the entropy analysis of third-order nanofluid fluid slip flow caused by a stretchable sheet implanted in a porous plate along with thermal radiation, convective surface boundary, non-Fourier heat flux applications, and nanoparticle concentration on zero mass flux conditions. The governing physical systems are modified into non-linear ordinary systems with the aid of similarity variables, and the outcomes are solved by a homotopy analysis scheme. The impression of certain governing flow parameters on the nanoparticle concentration, temperature, and velocity is illustrated through graphs, while the alteration of many valuable engineering parameters viz. the Nusselt number and Sherwood number are depicted in graphs. Entropy generation with various parameters is obtained and discussed in detail. The estimation of entropy generation using the Bejan number find robust application in power engineering and aeronautical propulsion to forecast the smartness of entire system.


2021 ◽  
Author(s):  
M R Acharya ◽  
P Mishra ◽  
Satyananda Panda

Abstract This paper analyses the augmentation entropy generation number for a viscous nanofluid flow over a non-isothermal wedge including the effects of non-linear radiation and activation energy. We discuss the influence of thermodynamically important parameters during the study, namely, the Bejan number, entropy generation number, and the augmentation entropy generation number. The mathematical formulation for thermal conductivity and viscosity of nanofluid for Al2O3 − EG mixture has been considered. The results were numerically computed using implicit Keller-Box method and depicted graphically. The important result is the change in augmentation entropy generation number with Reynolds number. We observed that adding nanoparticles (volume fraction) tend to enhance augmentation entropy generation number for Al2O3 − EG nanofluid. Further, the investigation on the thermodynamic performance of non-isothermal nanofluid flow over a wedge reveals that adding nanoparticles to the base fluid is effective only when the contribution of heat transfer irreversibility is more than fluid friction irreversibility. This work also discusses the physical interpretation of heat transfer irreversibility and pressure drop irreversibility. This dependency includes Reynolds number and volume fraction parameter. Other than these, the research looked at a variety of physical characteristics associated with the flow of fluid, heat and mass transfer.


Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 18 ◽  
Author(s):  
Ghulam Rasool ◽  
Ting Zhang ◽  
Ali J. Chamkha ◽  
Anum Shafiq ◽  
Iskander Tlili ◽  
...  

The current article aims to present a numerical analysis of MHD Williamson nanofluid flow maintained to flow through porous medium bounded by a non-linearly stretching flat surface. The second law of thermodynamics was applied to analyze the fluid flow, heat and mass transport as well as the aspects of entropy generation using Buongiorno model. Thermophoresis and Brownian diffusion is considered which appears due to the concentration and random motion of nanoparticles in base fluid, respectively. Uniform magnetic effect is induced but the assumption of tiny magnetic Reynolds number results in zero magnetic induction. The governing equations (PDEs) are transformed into ordinary differential equations (ODEs) using appropriately adjusted transformations. The numerical method is used for solving the so-formulated highly nonlinear problem. The graphical presentation of results highlights that the heat flux receives enhancement for augmented Brownian diffusion. The Bejan number is found to be increasing with a larger Weissenberg number. The tabulated results for skin-friction, Nusselt number and Sherwood number are given. A decent agreement is noted in the results when compared with previously published literature on Williamson nanofluids.


2021 ◽  
pp. 2150342
Author(s):  
P.-Y. Xiong ◽  
M. Ijaz Khan ◽  
R. J. Punith Gowda ◽  
R. Naveen Kumar ◽  
B. C. Prasannakumara ◽  
...  

This investigation is about hybrid nanofluid flowing over a sheet. We considered two-dimensional Darcy–Forchheimer flow of different hybrid nanofluids with the influence of uniform heat source sink and nonlinear thermal radiation. Different nanoparticles can be used to improve the thermal conductivity of a liquid. A study comparing the various hybrid nanofluids to nanofluid is considered. Here, we have selected manganese Zinc ferrite and Nickel Zinc ferrite as nanoparticles with kerosene oil and engine oil as carrier liquids. Suitable similarity transformations are used to construct the required ordinary differential equations. The influence of several non-dimensional parameters on velocity and thermal gradients is analyzed through graphs. Also, entropy generation is computed and analyzed through graph for different involved parameters. Here, we observed that [Formula: see text]–[Formula: see text]–[Formula: see text]–[Formula: see text] had lower velocity when compared to other two solutions. The entropy generation and Bejan number are high in [Formula: see text]–[Formula: see text]–[Formula: see text] when compared to [Formula: see text]–[Formula: see text]–[Formula: see text]–[Formula: see text] and [Formula: see text]–[Formula: see text]–[Formula: see text] and increase in heat generation parameter increases the rate of heat transfer.


2020 ◽  
Vol 41 (11) ◽  
pp. 1671-1684
Author(s):  
S. Sindhu ◽  
B. J. Gireesha

Abstract The current exploration focuses on the ethylene glycol (EG) based nanoliquid flow in a microchannel. The effectiveness of the internal heat source and linear radiation is reflected in the present investigation. The estimation of suitable thermal conductivity model has affirmative impact on the convective heat transfer phenomenon. The examination is conceded with the nanoparticle aggregation demonstrated by the Maxwell-Bruggeman and Krieger-Dougherty models which tackle the formation of nanolayer. These models effectively describe the thermal conductivity and viscosity correspondingly. The dimensionless mathematical expressions are solved numerically by the Runge Kutta Fehlberg approach. A higher thermal field is attained for the Bruggeman model due to the formation of thermal bridge. A second law analysis is carried out to predict the sources of irreversibility associated with the thermal system. It is remarked that lesser entropy generation is obtained for the aggregation model. The entropy generation rate declines with the slip flow and the thermal heat flux. A notable enhancement in the Bejan number is attained by increasing the Biot number. It is established that the nanoparticle aggragation model exhibits a higher Bejan number in comparision with the usual flow model.


2018 ◽  
Vol 23 (2) ◽  
pp. 413-428 ◽  
Author(s):  
S. Jain ◽  
S. Bohra

Abstract In the present study, we have investigated entropy generation on a magnetohydrodynamic fluid flow and heat transfer over a stretching cylinder with a porous medium in slip flow regime. A uniform heat source and radiation is also considered. Similarity transformation has been applied for making an ordinary differential equation from nonlinear governing partial differential equations. The numerical solution for the set of nonlinear ordinary differential equations has been obtained by using the fourth-order Runge-Kutta scheme together with the shooting method. The effects of pertinent parameters such as the magnetic field parameter, permeability parameter, slip parameter, Prandtl number and radiation parameter on the fluid velocity distribution, temperature distribution, entropy generation and Bejan number are discussed graphically.


Author(s):  
M. Ijaz Khan ◽  
Salman Ahmad ◽  
T. Hayat ◽  
A. Alsaedi

Abstract The main theme of this paper is to investigate entropy generation analysis for unsteady three-dimensional flow of viscous (Newtonian) fluid between two horizontal parallel plates. Lower plate is porous and stretching while upper plate squeezed downward. Further effects of nonlinear thermal radiation, viscous dissipation, heat source/sink and activation energy are accounted. Entropy generation rate calculated in terms of thermal radiation, fluid diffusion and fluid friction. Transformations procedure used lead to reduction of PDE’s into ordinary ones. Built-in-Shooting technique is used for the computational analysis. Impacts of different flow variables on temperature, velocity, concentration, volumetric entropy generation and Bejan number are discussed and presented through graphs. Temperature and concentration gradient are discussed numerically. It is examined from obtained results that velocity of liquid particle decays through larger estimation of squeezing parameter. It is also examined that temperature distribution enhances for higher estimation of radiative heat flux. Moreover temperature and concentration gradient increase for larger squeezing parameter.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
T. N. Abdelhameed

AbstractIn this paper, impacts of magnetic field and porosity on the entropy generation of sodium-alginate (C6H9NaO7) fluid are studied. C6H9NaO7 is taken over a moving and heated vertical wall. Heat transfer is due to free convection. Initially, the problem is formulated in the form of PDEs along with physical conditions and then written in non-dimensional form. Problem is solved via Laplace transform and expression in analytical form is established for temperature and velocity field. The related relations for entropy generation and Bejan number and entropy generation are also examined. Nusselt number and Skin-friction are calculated and plotted in graphs. For numerical computations, a finite difference scheme is used using MATLAB software. The results in tables and graphs are discussed for embedded parameters. It is found that the magnetic field and porosity have strong influence on velocity, entropy generation and Bejan number. For greater Hartman number, entropy generation magnitude is greater compared to the Bejan number, conversely, this variation in Bejan number is more efficient. The porosity effect showed that if the medium is more porous, the entropy generation can decreases 50% when porosity increase from Ka = 1 to Ka = 2, however the Bejan number increases.


Sign in / Sign up

Export Citation Format

Share Document