Polymer-matrix stabilized metal nanoparticles: Synthesis, characterizations and insight into molecular interactions between metal ions, atoms and polymer moieties

2021 ◽  
Vol 325 ◽  
pp. 115135
Author(s):  
Prachi Bhol ◽  
Madhuchhanda Mohanty ◽  
Priti S. Mohanty
2021 ◽  
Vol 129 (12) ◽  
pp. 125302
Author(s):  
Wajeeha Saeed ◽  
Zeeshan Abbasi ◽  
Shumaila Majeed ◽  
Sohail Anjum Shahzad ◽  
Abdul Faheem Khan ◽  
...  

AIChE Journal ◽  
2008 ◽  
Vol 54 (8) ◽  
pp. 2220-2227 ◽  
Author(s):  
Sung‐Hwa Lin

Carbon ◽  
2017 ◽  
Vol 111 ◽  
pp. 322-333 ◽  
Author(s):  
Huating Kong ◽  
Kai Xia ◽  
Liang Pan ◽  
Jichao Zhang ◽  
Yan Luo ◽  
...  

2011 ◽  
Vol 44 (4) ◽  
pp. 878-881 ◽  
Author(s):  
Hwanho Choi ◽  
Hongsuk Kang ◽  
Hwangseo Park

MetLigDB (http://silver.sejong.ac.kr/MetLigDB) is a publicly accessible web-based database through which the interactions between a variety of chelating groups and various central metal ions in the active site of metalloproteins can be explored in detail. Additional information can also be retrieved, including protein and inhibitor names, the amino acid residues coordinated to the central metal ion, and the binding affinity of the inhibitor for the target metalloprotein. Although many metalloproteins have been considered promising targets for drug discovery, it is difficult to discover new inhibitors because of the difficulty in designing a suitable chelating moiety to impair the catalytic activity of the central metal ion. Because both common and specific chelating groups can be identified for varying metal ions and the associated coordination environments, MetLigDB is expected to give users insight into designing new inhibitors of metalloproteins for drug discovery.


2021 ◽  
Author(s):  
Ramesh Kumar Gajula ◽  
Subhrajit Mohanty ◽  
Manjari Chakraborty ◽  
Moloy Sarkar ◽  
M. Jaya Prakash

Fluorescent covalent organic cage molecule (F-COC) showed enhanced emission intensity in chloroform solution and polymer matrix film form in presence of chloroform vapours.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Esha Mishra ◽  
Subrata Majumder ◽  
Shikha Varma ◽  
Peter A. Dowben

Abstract X-ray Photoelectron Spectroscopy (XPS) has been used to study the interactions of heavy metal ions with DNA with some success. Surface sensitivity and selectivity of XPS are advantageous for identifying and characterizing the chemical and elemental structure of the DNA to metal interaction. This review summarizes the status of what amounts to a large part of the photoemission investigations of biomolecule interactions with metals and offers insight into the mechanism for heavy metal-bio interface interactions. Specifically, it is seen that metal interaction with DNA results in conformational changes in the DNA structure.


2017 ◽  
Vol 45 (3) ◽  
pp. 741-750 ◽  
Author(s):  
Sjoerd J. van Deventer ◽  
Vera-Marie E. Dunlock ◽  
Annemiek B. van Spriel

To facilitate the myriad of different (signaling) processes that take place at the plasma membrane, cells depend on a high degree of membrane protein organization. Important mediators of this organization are tetraspanin proteins. Tetraspanins interact laterally among themselves and with partner proteins to control the spatial organization of membrane proteins in large networks called the tetraspanin web. The molecular interactions underlying the formation of the tetraspanin web were hitherto mainly described based on their resistance to different detergents, a classification which does not necessarily correlate with functionality in the living cell. To look at these interactions from a more physiological point of view, this review discusses tetraspanin interactions based on their function in the tetraspanin web: (1) intramolecular interactions supporting tetraspanin structure, (2) tetraspanin–tetraspanin interactions supporting web formation, (3) tetraspanin–partner interactions adding functional partners to the web and (4) cytosolic tetraspanin interactions regulating intracellular signaling. The recent publication of the first full-length tetraspanin crystal structure sheds new light on both the intra- and intermolecular tetraspanin interactions that shape the tetraspanin web. Furthermore, recent molecular dynamic modeling studies indicate that the binding strength between tetraspanins and between tetraspanins and their partners is the complex sum of both promiscuous and specific interactions. A deeper insight into this complex mixture of interactions is essential to our fundamental understanding of the tetraspanin web and its dynamics which constitute a basic building block of the cell surface.


Sign in / Sign up

Export Citation Format

Share Document