scholarly journals The regulator of G-protein signaling RGS16 promotes insulin secretion and β-cell proliferation in rodent and human islets

2016 ◽  
Vol 5 (10) ◽  
pp. 988-996 ◽  
Author(s):  
Kevin Vivot ◽  
Valentine S. Moullé ◽  
Bader Zarrouki ◽  
Caroline Tremblay ◽  
Arturo D. Mancini ◽  
...  
2017 ◽  
Vol 8 (5) ◽  
pp. e2821-e2821 ◽  
Author(s):  
H Dong ◽  
Y Zhang ◽  
J Wang ◽  
D S Kim ◽  
H Wu ◽  
...  

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Vladlen Slepak ◽  
Qiang Wang ◽  
Taylor Henry ◽  
Alexey Pronin ◽  
Camila Lubaczeuski ◽  
...  

2010 ◽  
Vol 21 (8) ◽  
pp. 1275-1280 ◽  
Author(s):  
Rama Nadella ◽  
Joe B. Blumer ◽  
Guangfu Jia ◽  
Michelle Kwon ◽  
Talha Akbulut ◽  
...  

2011 ◽  
Vol 301 (1) ◽  
pp. H147-H156 ◽  
Author(s):  
Peng Zhang ◽  
Jialin Su ◽  
Michelle E. King ◽  
Angel E. Maldonado ◽  
Cindy Park ◽  
...  

Cardiac fibroblasts play a key role in fibrosis development in response to stress and injury. Angiotensin II (ANG II) is a major profibrotic activator whose downstream effects (such as phospholipase Cβ activation, cell proliferation, and extracellular matrix secretion) are mainly mediated via Gq-coupled AT1 receptors. Regulators of G protein signaling (RGS), which accelerate termination of G protein signaling, are expressed in the myocardium. Among them, RGS2 has emerged as an important player in modulating Gq-mediated hypertrophic remodeling in cardiac myocytes. To date, no information is available on RGS in cardiac fibroblasts. We tested the hypothesis that RGS2 is an important regulator of ANG II-induced signaling and function in ventricular fibroblasts. Using an in vitro model of fibroblast activation, we have demonstrated expression of several RGS isoforms, among which only RGS2 was transiently upregulated after short-term ANG II stimulation. Similar results were obtained in fibroblasts isolated from rat hearts after in vivo ANG II infusion via minipumps for 1 day. In contrast, prolonged ANG II stimulation (3–14 days) markedly downregulated RGS2 in vivo. To delineate the functional effects of RGS expression changes, we used gain- and loss-of-function approaches. Adenovirally infected RGS2 had a negative regulatory effect on ANG II-induced phospholipase Cβ activity, cell proliferation, and total collagen production, whereas RNA interference of endogenous RGS2 had opposite effects, despite the presence of several other RGS. Together, these data suggest that RGS2 is a functionally important negative regulator of ANG II-induced cardiac fibroblast responses that may play a role in ANG II-induced fibrosis development.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1008
Author(s):  
Guillaume Bastin ◽  
Lemieux Luu ◽  
Battsetseg Batchuluun ◽  
Alexandra Mighiu ◽  
Stephanie Beadman ◽  
...  

A number of diverse G-protein signaling pathways have been shown to regulate insulin secretion from pancreatic β-cells. Accordingly, regulator of G-protein signaling (RGS) proteins have also been implicated in coordinating this process. One such protein, RGS4, is reported to show both positive and negative effects on insulin secretion from β-cells depending on the physiologic context under which it was studied. We here use an RGS4-deficient mouse model to characterize previously unknown G-protein signaling pathways that are regulated by RGS4 during glucose-stimulated insulin secretion from the pancreatic islets. Our data show that loss of RGS4 results in a marked deficiency in glucose-stimulated insulin secretion during both phase I and phase II of insulin release in intact mice and isolated islets. These deficiencies are associated with lower cAMP/PKA activity and a loss of normal calcium surge (phase I) and oscillatory (phase II) kinetics behavior in the RGS4-deficient β-cells, suggesting RGS4 may be important for regulation of both Gαi and Gαq signaling control during glucose-stimulated insulin secretion. Together, these studies add to the known list of G-protein coupled signaling events that are controlled by RGS4 during glucose-stimulated insulin secretion and highlight the importance of maintaining normal levels of RGS4 function in healthy pancreatic tissues.


2020 ◽  
Vol 295 (21) ◽  
pp. 7213-7223
Author(s):  
Qiang Wang ◽  
Taylor A. N. Henry ◽  
Alexey N. Pronin ◽  
Geeng-Fu Jang ◽  
Camila Lubaczeuski ◽  
...  

G protein–coupled receptors (GPCRs) are important modulators of glucose-stimulated insulin secretion, essential for maintaining energy homeostasis. Here we investigated the role of Gβ5–R7, a protein complex consisting of the atypical G protein β subunit Gβ5 and a regulator of G protein signaling of the R7 family. Using the mouse insulinoma MIN6 cell line and pancreatic islets, we investigated the effects of G protein subunit β 5 (Gnb5) knockout on insulin secretion. Consistent with previous work, Gnb5 knockout diminished insulin secretion evoked by the muscarinic cholinergic agonist Oxo-M. We found that the Gnb5 knockout also attenuated the activity of other GPCR agonists, including ADP, arginine vasopressin, glucagon-like peptide 1, and forskolin, and, surprisingly, the response to high glucose. Experiments with MIN6 cells cultured at different densities provided evidence that Gnb5 knockout eliminated the stimulatory effect of cell adhesion on Oxo-M–stimulated glucose–stimulated insulin secretion; this effect likely involved the adhesion GPCR GPR56. Gnb5 knockout did not influence cortical actin depolymerization but affected protein kinase C activity and the 14-3-3ϵ substrate. Importantly, Gnb5−/− islets or MIN6 cells had normal total insulin content and released normal insulin amounts in response to K+-evoked membrane depolarization. These results indicate that Gβ5–R7 plays a role in the insulin secretory pathway downstream of signaling via all GPCRs and glucose. We propose that the Gβ5–R7 complex regulates a phosphorylation event participating in the vesicular trafficking pathway downstream of G protein signaling and actin depolymerization but upstream of insulin granule release.


Sign in / Sign up

Export Citation Format

Share Document