Physical characterization of succinylated type I collagen by Raman spectra and MALDI-TOF/MS and in vitro evaluation for biomedical applications

2011 ◽  
Vol 994 (1-3) ◽  
pp. 117-124 ◽  
Author(s):  
Ramadhar Kumar ◽  
R. Sripriya ◽  
S. Balaji ◽  
M. Senthil Kumar ◽  
P.K. Sehgal
2013 ◽  
Vol 20 (2) ◽  
pp. 117-125
Author(s):  
Yu-Cheng Hsiao ◽  
Ming-Hsuan Chang ◽  
John J. S. Chen ◽  
Chien-Chung Liou ◽  
Feng-Di T. Lung
Keyword(s):  
Type I ◽  

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1193
Author(s):  
Paolo Giannoni ◽  
Marco Grosso ◽  
Giuseppina Fugazza ◽  
Mario Nizzari ◽  
Maria Cristina Capra ◽  
...  

Hypersensitivity pneumonitis (HP) is a diffuse interstitial lung disease (ILD) caused by the inhalation of a variety of antigens in susceptible individuals. Patients with fibrotic HP (fHP) may show histopathological and radiological manifestations similar to patients with idiopathic pulmonary fibrosis (usual interstitial pneumonia-like pattern of fibrosis) that are associated with a worse prognosis. We describe here the establishment and characterization of a fibroblastic cell line derived from the broncho-alveolar lavage (BAL) of a patient with fHP, a 53 year old man who presented at our Pneumology Unit with cough and dyspnea. The fHP diagnosis was based on international criteria and multidisciplinary discussion. Primary fibroblasts were expanded in vitro until passage 36. These fibroblasts displayed morpho/phenotypical features of myofibroblasts, showing high positivity for α-smooth muscle actin, type I collagen, and fibronectin as determined by quantitative RT-PCR and cyto-fluorographic analysis. Cytogenetic analyses further evidenced trisomy of chromosome 10, which interestingly harbors the FGF2R gene. To our knowledge, this is the first fibroblastic cell line derived from an fHP patient and might, therefore, represent a suitable tool to model the disease in vitro. We preliminarily assessed here the activity of pirfenidone, further demonstrating a consistent inhibition of cells growth by this antifibrotic drug.


2014 ◽  
Vol 15 (4) ◽  
pp. 531-541 ◽  
Author(s):  
Xiujie Zhang ◽  
Xueying Chen ◽  
Ting Yang ◽  
Naili Zhang ◽  
Li Dong ◽  
...  

2015 ◽  
Vol 6 (3) ◽  
pp. 667-686 ◽  
Author(s):  
Xiangchen Qiao ◽  
Stephen Russell ◽  
Xuebin Yang ◽  
Giuseppe Tronci ◽  
David Wood

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Alireza Hooshmand-Ardakani ◽  
Tahereh Talaei-Khozani ◽  
Mehdi Sadat-Shojai ◽  
Soghra Bahmanpour ◽  
Nehleh Zarei-fard

Fabrication of an appropriate scaffold is critical in order to recapitulate the architecture and functionality of the native tissue. In this study, we attempted to create favorable collagen fiber alignment and multilamellar with uniaxially oriented layers, using a disc collector by turning mats 90 degrees horizontally at specific times. Different concentrations of rat tail-derived type I collagen (3, 6, 8% w/v) in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) are used for electrospinning affairs. The 6% w/v collagen at an applied voltage of 20 kV and collector rotation of 2500 rpm was selected to exhibit bead-free homogeneous nanofiber with fiber thickness of 0.14 ± 0.4 µm, maximum thickness of 0.5 ± 0.08 µm, and 60% porosity. Also, scanning electron microscope images of electrospun fibers showed 3D multilamellar scaffold with the goodness of 96.5% ± 0.8 in each aligned uniaxially oriented fiber layer. Cross-linking of collagen fibers with N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) reduced the fiber degradation rate and preserved the fiber morphology and alignment. The multilamellar mat showed significant increase in tensile strength and average breaking elongation in comparison with unilamellar mat. In vitro cell culture, using human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) on cross-linked scaffold, showed improvement in cell proliferation, attachment, migration, and intercellular junction with a flattened morphology. Raman spectra revealed the preservation of collagen structure. In addition, Raman spectra of the cell containing scaffold were the same as those of an intact intervertebral disc as a sample to be used in engineering tissues. In conclusion, our results showed that the 3D multilamellar collagen nanofibrous scaffold is more appropriate for the tissues that have multilamellar structure.


1992 ◽  
Vol 103 (1) ◽  
pp. 273-285 ◽  
Author(s):  
L. ZYLBERBERG ◽  
J. BONAVENTURE ◽  
L. COHEN-SOLAL ◽  
D. J. HARTMANN ◽  
J. BEREITERHAHN

The characterization of the fibrillar collagens and the cellular control of their spatial deposition were studied in fish scales using immunofluorescence, electron microscopy, electrophoretic and HPLC analyses, immunoprecipitation and hybridization with cDNA probes. This study was carried out on undisturbed and regenerating scales in situ and in organ and cell cultures from regenerating scales. The hyposquamal scleroblasts forming a pseudoepithelium show an apico-basal polarization and synthesize thick collagen fibrils (100 nm) organized in a plywood pattern as long as the integrity of the cell-cell and cell-collagenous matrix contacts are preserved. In culture, scleroblasts become fibroblastlike and produce an unordered meshwork of thin collagen fibrils (30 nm). Comparison of the synthesized collagens in culture with those extracted from the scales indicates that culture conditions modify fibrillogenesis but do not change the expression of fibrillar collagen genes. Type I collagen, the predominent component, is associated with the minor type V collagen. Type III collagen was not present. In type I collagen, a third chain, α3 chain, was identified. The ratio between the 3 chains suggests the coexistence of two heterotrimers (α(I))2 α2(I) and αl(I) α2(I) α3(I). Analysis by HPLC and electrophoresis of the cyanogen bromide-derived peptides obtained from the purified a3 chain support the hypothesis that α(I) and α3(I) chains are encoded by two different genes. The presence of the two types of heterotrimers in vivo as well as in vitro could correspond to an innate property of the goldfish scleroblasts. Despite the fact that teleost cyanogen bromide-derived peptides differ from those of higher vertebrates, homologies with the mammalian collagen genes (human, for example) are sufficient to allow the detection of mRNA transcripts for αl(I), α2(I) and α2(V) from confluent scleroblast cultures with human probes.


1981 ◽  
Vol 197 (2) ◽  
pp. 405-412 ◽  
Author(s):  
A Le Pape ◽  
J P Muh ◽  
A J Bailey

The N epsilon-glycosylation of lysine and hydroxylysine residues in collagen from streptozotocin-induced-diabetic rats was confirmed and the stability of the complex shown to be due to an Amadori rearrangement. The studies also demonstrate the relative specificities of glucose, galactose and mannose in their reaction with collagen. The glycosylation of lysine in vitro occurs with glucose and galactose, but not with mannose, whereas only gucose reacts with hydroxylysine to any significant extent. Glycosylation of collagen occurs slowly during normal aging, but in contrast with reports suggesting accelerated aging of collagen in diabetic animals, we clearly demonstrated that the apparent increased stability is not due to an acceleration of the normal maturation process involving the reducible cross-links.


2009 ◽  
Vol 5 ◽  
pp. S19
Author(s):  
Henk Hoogenkamp ◽  
Dorien Tiemessen ◽  
Keauis Faraj ◽  
Willeke Daamen ◽  
Toin van Kuppenvelt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document