Characterization of hydrogen sulphide reaction with rat-tail tendon Type I collagen in vitro

1985 ◽  
Vol 20 (4) ◽  
pp. 403-410 ◽  
Author(s):  
P. W. Johnson ◽  
J. Tonzetich ◽  
R. H. Pearce
Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 597
Author(s):  
Junde Chen ◽  
Guangyu Wang ◽  
Yushuang Li

Marine collagen is gaining vast interest because of its high biocompatibility and lack of religious and social restrictions compared with collagen from terrestrial sources. In this study, lizardfish (Synodus macrops) scales were used to isolate acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC). Both ASC and PSC were identified as type I collagen with intact triple-helix structures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and spectroscopy. The ASC and PSC had high amino acids of 237 residues/1000 residues and 236 residues/1000 residues, respectively. Thus, the maximum transition temperature (Tmax) of ASC (43.2 °C) was higher than that of PSC (42.5 °C). Interestingly, the Tmax of both ASC and PSC was higher than that of rat tail collagen (39.4 °C) and calf skin collagen (35.0 °C), the terrestrial collagen. Solubility tests showed that both ASC and PSC exhibited high solubility in the acidic pH ranges. ASC was less susceptible to the “salting out” effect compared with PSC. Both collagen types were nontoxic to HaCaT and MC3T3-E1 cells, and ASC was associated with a higher cell viability than PSC. These results indicated that ASC from lizardfish scales could be an alternative to terrestrial sources of collagen, with potential for biomedical applications.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1193
Author(s):  
Paolo Giannoni ◽  
Marco Grosso ◽  
Giuseppina Fugazza ◽  
Mario Nizzari ◽  
Maria Cristina Capra ◽  
...  

Hypersensitivity pneumonitis (HP) is a diffuse interstitial lung disease (ILD) caused by the inhalation of a variety of antigens in susceptible individuals. Patients with fibrotic HP (fHP) may show histopathological and radiological manifestations similar to patients with idiopathic pulmonary fibrosis (usual interstitial pneumonia-like pattern of fibrosis) that are associated with a worse prognosis. We describe here the establishment and characterization of a fibroblastic cell line derived from the broncho-alveolar lavage (BAL) of a patient with fHP, a 53 year old man who presented at our Pneumology Unit with cough and dyspnea. The fHP diagnosis was based on international criteria and multidisciplinary discussion. Primary fibroblasts were expanded in vitro until passage 36. These fibroblasts displayed morpho/phenotypical features of myofibroblasts, showing high positivity for α-smooth muscle actin, type I collagen, and fibronectin as determined by quantitative RT-PCR and cyto-fluorographic analysis. Cytogenetic analyses further evidenced trisomy of chromosome 10, which interestingly harbors the FGF2R gene. To our knowledge, this is the first fibroblastic cell line derived from an fHP patient and might, therefore, represent a suitable tool to model the disease in vitro. We preliminarily assessed here the activity of pirfenidone, further demonstrating a consistent inhibition of cells growth by this antifibrotic drug.


2006 ◽  
Vol 1 (6) ◽  
pp. 2753-2758 ◽  
Author(s):  
Navneeta Rajan ◽  
Jason Habermehl ◽  
Marie-France Coté ◽  
Charles J Doillon ◽  
Diego Mantovani

Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 220
Author(s):  
Qinghua Wang ◽  
Jingwei Chen ◽  
Dexiang Wang ◽  
Minghui Shen ◽  
Huilong Ou ◽  
...  

Uncontrolled bleeding is the main cause of mortality from trauma. Collagen has been developed as an important hemostatic material due to its platelet affinity function. A bath sponge skeleton is rich in collagen, also known as spongin. To understand the hemostatic effect of spongin, spongin materials, SX, SFM and SR were prepared from the bath sponge Spongia officinalis, and hemostatic experiments were performed. The SX, SFM and SR were significantly better than the positive control, type I collagen, in shortening the whole blood clotting time in vitro and hemostasis upon rat tail amputation. In a hemostatic experiment of rabbit common carotid artery injury, the hemostatic time and 3 h survival rate of the SFM group were 3.00 ± 1.53 min and 100%, respectively, which are significantly better than those of the commercial hemostat CELOX-A (10.33 ± 1.37 min and 67%, respectively). Additionally, the SFM showed good coagulation effects in platelet-deficient blood and defibrinated blood, while also showing good biocompatibility. Through a variety of tests, we speculated that the hemostatic activity of the SFM is mainly caused by its hyperabsorbency, high affinity to platelets and high effective concentration. Overall, the SFM and spongin derivates could be potential hemostatic agents for uncontrolled bleeding and hemorrhagic diseases caused by deficiency or dysfunction of coagulation factors.


Author(s):  
K. Marenus ◽  
E. Kuhn ◽  
M. Beer

A specific reagent for the glycol groups of sugars yields similar staining patterns in isolated or embedded and thin sectioned rat tail tendon. These results suggest that the stain specificity and the structure of the protein fibers are retained after cross linking, embedding and thin sectioning.Osmate in the presence of tetramethylethylenediamine (TEMED) binds to glycols and has been found to stain sugar residues. SLS aggregates, in which adjacent molecules lie in exact register, can be formed by addition of ATP to collagen monomers. Osmate-TEMED staining of these has produced a specific band in Type I collagen at a known glycol position 10% along the molecule from the N-terminal end. We have observed a second band 10% from the C-terminal end (Fig. 1) which is also faintly visible in. In addition, other weak bands have been observed.


1992 ◽  
Vol 103 (1) ◽  
pp. 273-285 ◽  
Author(s):  
L. ZYLBERBERG ◽  
J. BONAVENTURE ◽  
L. COHEN-SOLAL ◽  
D. J. HARTMANN ◽  
J. BEREITERHAHN

The characterization of the fibrillar collagens and the cellular control of their spatial deposition were studied in fish scales using immunofluorescence, electron microscopy, electrophoretic and HPLC analyses, immunoprecipitation and hybridization with cDNA probes. This study was carried out on undisturbed and regenerating scales in situ and in organ and cell cultures from regenerating scales. The hyposquamal scleroblasts forming a pseudoepithelium show an apico-basal polarization and synthesize thick collagen fibrils (100 nm) organized in a plywood pattern as long as the integrity of the cell-cell and cell-collagenous matrix contacts are preserved. In culture, scleroblasts become fibroblastlike and produce an unordered meshwork of thin collagen fibrils (30 nm). Comparison of the synthesized collagens in culture with those extracted from the scales indicates that culture conditions modify fibrillogenesis but do not change the expression of fibrillar collagen genes. Type I collagen, the predominent component, is associated with the minor type V collagen. Type III collagen was not present. In type I collagen, a third chain, α3 chain, was identified. The ratio between the 3 chains suggests the coexistence of two heterotrimers (α(I))2 α2(I) and αl(I) α2(I) α3(I). Analysis by HPLC and electrophoresis of the cyanogen bromide-derived peptides obtained from the purified a3 chain support the hypothesis that α(I) and α3(I) chains are encoded by two different genes. The presence of the two types of heterotrimers in vivo as well as in vitro could correspond to an innate property of the goldfish scleroblasts. Despite the fact that teleost cyanogen bromide-derived peptides differ from those of higher vertebrates, homologies with the mammalian collagen genes (human, for example) are sufficient to allow the detection of mRNA transcripts for αl(I), α2(I) and α2(V) from confluent scleroblast cultures with human probes.


1981 ◽  
Vol 197 (2) ◽  
pp. 405-412 ◽  
Author(s):  
A Le Pape ◽  
J P Muh ◽  
A J Bailey

The N epsilon-glycosylation of lysine and hydroxylysine residues in collagen from streptozotocin-induced-diabetic rats was confirmed and the stability of the complex shown to be due to an Amadori rearrangement. The studies also demonstrate the relative specificities of glucose, galactose and mannose in their reaction with collagen. The glycosylation of lysine in vitro occurs with glucose and galactose, but not with mannose, whereas only gucose reacts with hydroxylysine to any significant extent. Glycosylation of collagen occurs slowly during normal aging, but in contrast with reports suggesting accelerated aging of collagen in diabetic animals, we clearly demonstrated that the apparent increased stability is not due to an acceleration of the normal maturation process involving the reducible cross-links.


Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


Sign in / Sign up

Export Citation Format

Share Document