Synthesis, in vitro evaluation, and docking studies of novel chromone derivatives as HIV-1 protease inhibitor

2011 ◽  
Vol 1001 (1-3) ◽  
pp. 152-161 ◽  
Author(s):  
Jiraporn Ungwitayatorn ◽  
Chanpen Wiwat ◽  
Weerasak Samee ◽  
Patcharawee Nunthanavanit ◽  
Narumol Phosrithong
2015 ◽  
Vol 62 ◽  
pp. 15-21 ◽  
Author(s):  
Fazal Rahim ◽  
Hayat Ullah ◽  
Muhammad Tariq Javid ◽  
Abdul Wadood ◽  
Muhammad Taha ◽  
...  

2003 ◽  
Vol 47 (10) ◽  
pp. 3123-3129 ◽  
Author(s):  
Yasuhiro Koh ◽  
Hirotomo Nakata ◽  
Kenji Maeda ◽  
Hiromi Ogata ◽  
Geoffrey Bilcer ◽  
...  

ABSTRACT We designed, synthesized, and identified UIC-94017 (TMC114), a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) containing a 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF) and a sulfonamide isostere which is extremely potent against laboratory HIV-1 strains and primary clinical isolates (50% inhibitory concentration [IC50], ∼0.003 μM; IC90, ∼0.009 μM) with minimal cytotoxicity (50% cytotoxic concentration for CD4+ MT-2 cells, 74 μM). UIC-94017 blocked the infectivity and replication of each of HIV-1NL4-3 variants exposed to and selected for resistance to saquinavir, indinavir, nelfinavir, or ritonavir at concentrations up to 5 μM (IC50s, 0.003 to 0.029 μM), although it was less active against HIV-1NL4-3 variants selected for resistance to amprenavir (IC50, 0.22 μM). UIC-94017 was also potent against multi-PI-resistant clinical HIV-1 variants isolated from patients who had no response to existing antiviral regimens after having received a variety of antiviral agents. Structural analyses revealed that the close contact of UIC-94017 with the main chains of the protease active-site amino acids (Asp-29 and Asp-30) is important for its potency and wide spectrum of activity against multi-PI-resistant HIV-1 variants. Considering the favorable pharmacokinetics of UIC-94017 when administered with ritonavir, the present data warrant that UIC-94017 be further developed as a potential therapeutic agent for the treatment of primary and multi-PI-resistant HIV-1 infections.


2022 ◽  
Vol 23 (2) ◽  
pp. 582
Author(s):  
Alice Sosic ◽  
Giulia Olivato ◽  
Caterina Carraro ◽  
Richard Göttlich ◽  
Dan Fabris ◽  
...  

After a long limbo, RNA has gained its credibility as a druggable target, fully earning its deserved role in the next generation of pharmaceutical R&D. We have recently probed the trans-activation response (TAR) element, an RNA stem–bulge–loop domain of the HIV-1 genome with bis-3-chloropiperidines (B-CePs), and revealed the compounds unique behavior in stabilizing TAR structure, thus impairing in vitro the chaperone activity of the HIV-1 nucleocapsid (NC) protein. Seeking to elucidate the determinants of B-CePs inhibition, we have further characterized here their effects on the target TAR and its NC recognition, while developing quantitative analytical approaches for the study of multicomponent RNA-based interactions.


2019 ◽  
Vol 17 (2) ◽  
pp. 105-114
Author(s):  
Pankaj Wadhwa ◽  
Priti Jain ◽  
Arpit Patel ◽  
Shantanu Shinde ◽  
Hemant R. Jadhav

<P>Background: A series of novel 3-(1,3-dioxoisoindolin-2-yl)-N-substituted phenyl benzamide derivatives was synthesized and tested in vitro against human immunodeficiency virus type-1 Integrase (HIV-1 IN). Methods: Out of the 18 analogues, six (compounds 16c, 16h, 16i, 16m, 16n and 16r) showed significant inhibition of strand transfer by HIV-1 integrase. For these six compounds. IC50 was below 5.0 µM. In silico docking studies revealed that the presence of 2-phenyl isoindoline-1,3-dione motif was essential as it was found to interact with active site magnesium. Results: To further confirm the results, cell-based HIV-1 and HIV-2 inhibitory assay was carried out. Conclusion: These compounds possess structural features not seen in previously reported HIV-1 integrase inhibitors and thus can help further optimization of anti-HIV-1 integrase activity.</P>


2019 ◽  
Vol 92 ◽  
pp. 103281 ◽  
Author(s):  
Ramu Manjula ◽  
Nikhila Gokhale ◽  
Sruthi Unni ◽  
Prashant Deshmukh ◽  
Rajkumar Reddyrajula ◽  
...  

AIDS ◽  
1994 ◽  
Vol 8 (6) ◽  
pp. 753-756 ◽  
Author(s):  
Dean L. Winslow ◽  
Douglas Mayers ◽  
Helen Scarnati ◽  
James Lane ◽  
Arlene Bincsik ◽  
...  

2018 ◽  
Vol 3 (28) ◽  
pp. 8270-8276 ◽  
Author(s):  
Ramesh Gondru ◽  
K Sirisha ◽  
Sneha Raj ◽  
Shravan Kumar Gunda ◽  
C Ganesh Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document