A silver complex with ibuprofen: Synthesis, solid state characterization, DFT calculations and antibacterial assays

2013 ◽  
Vol 1049 ◽  
pp. 1-6 ◽  
Author(s):  
Irlene Maria Pereira e Silva ◽  
Daniel de Moraes Profirio ◽  
Raphael Enoque Ferraz de Paiva ◽  
Marcelo Lancellotti ◽  
André Luiz Barboza Formiga ◽  
...  
CrystEngComm ◽  
2021 ◽  
Author(s):  
Mainak Karmakar ◽  
Antonio Frontera ◽  
Shouvik Chattopadhyay

The formation of an infinite 1D assembly is governed by the H-bonding interactions in the solid state structure of the two zinc complexes. It has been analyzed energetically using DFT calculations and several computational tools.


2021 ◽  
Vol 21 (2) ◽  
pp. 1202-1217
Author(s):  
Yuntian Xiao ◽  
Ling Zhou ◽  
Hongxun Hao ◽  
Ying Bao ◽  
Qiuxiang Yin ◽  
...  

2018 ◽  
Vol 74 (12) ◽  
pp. 1641-1649
Author(s):  
Wei-Tsung Lee ◽  
Matthias Zeller ◽  
David Upp ◽  
Yuliya Politanska ◽  
Doug Steinman ◽  
...  

Treatment of the ortho-triazacyclophane 1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-triene [(C6H5)3(NH)(NCH3)2, L1] with Fe[N(SiMe3)2]2 yields the dimeric iron(II) complex bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)bis[(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido)iron(II)], [Fe(C20H18N3)4] or Fe2(L1)4 (9). Dissolution of 9 in tetrahydrofuran (THF) results in solvation by two THF ligands and the formation of a simpler monoiron complex, namely bis(μ-1,4-dimethyltribenzo[b,e,h][1,4,7]triazacyclonona-2,5,8-trien-7-ido-κN 7)bis(tetrahydrofuran-κO)iron(II), [Fe(C20H18N3)2(C4H8O)2] or (L1)2Fe(THF)2 (10). The reaction is reversible and 10 reverts in vacuo to diiron complex 9. In the structures of both 9 and 10, the monoanionic triazacyclophane ligand L1− is observed in only the less-symmetric saddle conformation. No bowl-shaped crown conformers are observed in the solid state, thus preventing chelating κ3-coordination to the metal as had been proposed earlier based on density functional theory (DFT) calculations. Instead, the L1− ligands are bound in either a η2-chelating fashion through the amide and one amine donor (for one of the four ligands of 9), or solely through their amide N atoms in an even simpler monodentate η1-coordination mode. Density functional calculations on dimer 9 revealed nearly full cationic charges on each Fe atom and no bonding interaction between the two metal centers, consistent with the relatively long Fe...Fe distance of 2.912 (1) Å observed in the solid state.


2019 ◽  
Vol 15 ◽  
pp. 2013-2019 ◽  
Author(s):  
Esther Nieland ◽  
Oliver Weingart ◽  
Bernd M Schmidt

ortho-Fluoroazobenzenes are a remarkable example of bistable photoswitches, addressable by visible light. Symmetrical, highly fluorinated azobenzenes bearing an iodine substituent in para-position were shown to be suitable supramolecular building blocks both in solution and in the solid state in combination with neutral halogen bonding acceptors, such as lutidines. Therefore, we investigate the photochemistry of a series of azobenzene photoswitches. Upon introduction of iodoethynyl groups, the halogen bonding donor properties are significantly strengthened in solution. However, the bathochromic shift of the π→π* band leads to a partial overlap with the n→π* band, making it slightly more difficult to address. The introduction of iodine substituents is furthermore accompanied with a diminishing thermal half-life. A series of three azobenzenes with different halogen bonding donor properties are discussed in relation to their changing photophysical properties, rationalized by DFT calculations.


2019 ◽  
Vol 23 (11n12) ◽  
pp. 1346-1354 ◽  
Author(s):  
Danielle Laurencin ◽  
Pascal G. Yot ◽  
Christel Gervais ◽  
Yannick Guari ◽  
Sébastien Clément ◽  
...  

Porphyrin nanorods were prepared by ion-association between free-base meso 5,10,15,20-tetrakis-(4-[Formula: see text]-methylpyridinium)porphyrin cations and tetraphenylborate anions. The nanorods have variable lengths (up to a few micrometers long) and diameters ([Formula: see text]50–500 nm). Their structure at the molecular level was elucidated by combining multinuclear solid state NMR spectroscopy, synchrotron X-ray powder diffraction and DFT calculations.


2010 ◽  
Vol 99 (9) ◽  
pp. 3684-3697 ◽  
Author(s):  
Faraj Atassi ◽  
Chen Mao ◽  
Ahmad S. Masadeh ◽  
Stephen R. Byrn

Steroids ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. 261-268 ◽  
Author(s):  
Kari V. Ahonen ◽  
Manu K. Lahtinen ◽  
Arto M. Valkonen ◽  
Martin Dračínský ◽  
Erkki T. Kolehmainen

Sign in / Sign up

Export Citation Format

Share Document