Multi-laser printer is 20 times faster

2021 ◽  
Vol 76 (1) ◽  
pp. 57
Keyword(s):  
2013 ◽  
Vol 19 (S5) ◽  
pp. 58-61 ◽  
Author(s):  
Mino Yang ◽  
Jun-Ho Lee ◽  
Hee-Goo Kim ◽  
Euna Kim ◽  
Young-Nam Kwon ◽  
...  

AbstractDistribution of wax in laser printer toner was observed using an ultra-high-voltage (UHV) and a medium-voltage transmission electron microscope (TEM). As the radius of the wax spans a hundred to greater than a thousand nanometers, its three-dimensional recognition via TEM requires large depth of focus (DOF) for a volumetric specimen. A tomogram with a series of the captured images would allow the determination of their spatial distribution. In this study, bright-field (BF) images acquired with UHV-TEM at a high tilt angle prevented the construction of the tomogram. Conversely, the Z-contrast images acquired by the medium-voltage TEM produced a successful tomogram. The spatial resolution for both is discussed, illustrating that the image degradation was primarily caused by beam divergence of the Z-contrast image and the combination of DOF and chromatic aberration of the BF image from the UHV-TEM.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Yasuhiro Seo ◽  
Hiroshi Yabuno ◽  
Go Kono

To analyze the excitation mechanism of self-excited oscillation in a beam that is in contact with a moving floor surface such as a cleaning blade, which is a beam mounted in a laser printer to clean the photoreceptor, we study a beam subjected to Coulomb friction and theoretically predict the occurrence of self-excited oscillation through mode-coupling instability. We present an extensible beam model, and derive its governing nonlinear equations by means of special Cosserat theory, which allows for the extensibility of the beam to be considered. The boundary conditions on the end of the beam are unique because the end of the beam makes contact with the moving floor surface. We used a discretized linearized governing equation and performed linear stability analysis. The results indicate that self-excited oscillation in the beam is produced due to both Coulomb friction and mode coupling of the bending and extension of the beam based on the extensibility in the axial direction.


1990 ◽  
pp. 155-171 ◽  
Author(s):  
Atsushi Kakuta
Keyword(s):  

2010 ◽  
Vol 17B (3) ◽  
pp. 197-206 ◽  
Author(s):  
Ji-Yeoun Baek ◽  
Heung-Su Lee ◽  
Seung-Gyu Kong ◽  
Jung-Ho Choi ◽  
Yeon-Mo Yang ◽  
...  

2014 ◽  
Vol 1663 ◽  
Author(s):  
Dmitry Fomitchev ◽  
Russell Lewis ◽  
Hairuo Tu ◽  
Li Cheng ◽  
Hajime Kambara ◽  
...  

ABSTRACTWe report on a new class of materials for laser printer toner applications. These materials were prepared from methacrysilane-in-water emulsions stabilized with colloidal silica particles. In this elegant system, the colloidal silica particles reside at the water/oil interface helping to emulsify the oil droplet, self-organizing into a raspberry-like morphology. The emulsion formation is followed by free-radical polymerization, hydrophobic treatment, and drying steps. This one pot synthesis in water affords a hydrophobic material with a particle size in the range of 80 to 300 nm. The particle size could be fine-tuned by changing the oil-to-silica mass ratio or by using colloidal silica particles of different sizes. Results of material characterization by solid-state NMR, electron microscopy, and particle size measurements methods will be presented. Examples of possible extensions of the synthesis towards materials with methacrylsilane partially substituted with other methacrylates will be provided. Application of the new material in toners will be described as will the comparison of its performance with the incumbent material - hydrophobic colloidal silica.


2018 ◽  
Vol 30 (10) ◽  
pp. 1182-1194
Author(s):  
KwangWook Gang ◽  
Min Jeong ◽  
Minseok Park

Sign in / Sign up

Export Citation Format

Share Document