scholarly journals Infrared Light Induced Patterning of Proteins on ppNIPAM Thermoresponsive Thin Films: A “Protein Laser Printer”

Author(s):  
K.F. Bohringer ◽  
H. Bilge ◽  
Xuanhong Cheng ◽  
B. Ratner ◽  
S. Takeuchi ◽  
...  
Lab on a Chip ◽  
2010 ◽  
Vol 10 (8) ◽  
pp. 1079 ◽  
Author(s):  
Xuanhong Cheng ◽  
E. Yegan Erdem ◽  
Shoji Takeuchi ◽  
Hiroyuki Fujita ◽  
Buddy D. Ratner ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yiyue Zhang ◽  
Masoumeh Keshavarz ◽  
Elke Debroye ◽  
Eduard Fron ◽  
Miriam Candelaria Rodríguez González ◽  
...  

Abstract Lead halide perovskites have attracted tremendous attention in photovoltaics due to their impressive optoelectronic properties. However, the poor stability of perovskite-based devices remains a bottleneck for further commercial development. Two-dimensional perovskites have great potential in optoelectronic devices, as they are much more stable than their three-dimensional counterparts and rapidly catching up in performance. Herein, we demonstrate high-quality two-dimensional novel perovskite thin films with alternating cations in the interlayer space. This innovative perovskite provides highly stable semiconductor thin films for efficient near-infrared light-emitting diodes (LEDs). Highly efficient LEDs with tunable emission wavelengths from 680 to 770 nm along with excellent operational stability are demonstrated by varying the thickness of the interlayer spacer cation. Furthermore, the best-performing device exhibits an external quantum efficiency of 3.4% at a high current density (J) of 249 mA/cm2 and remains above 2.5% for a J up to 720 mA cm−2, leading to a high radiance of 77.5 W/Sr m2 when driven at 6 V. The same device also shows impressive operational stability, retaining almost 80% of its initial performance after operating at 20 mA/cm2 for 350 min. This work provides fundamental evidence that this novel alternating interlayer cation 2D perovskite can be a promising and stable photonic emitter.


2012 ◽  
Vol 185 ◽  
pp. 60-64
Author(s):  
Min Min Zhu ◽  
Ze Hui Du ◽  
Jan Ma

(100)-oriented PLZT ((Pb1-x, Lax) (Zry,Ti1-y)1-x/4O3, x/y=9/65) films of up to ~ 1.23 μm have been developed on LaAlO3single crystal substrate by magnetron sputtering. The as-grown PLZT thin films exhibit high optical transparency in visible and near-infrared light wavelength and high quadratic (Kerr) EO coefficients. Prism coupler measurements reveal that the PLZT thin films possess large refractive index, as high as 2.524 in TE model and 2.481 in TM model. The transparency of >70% in the range of λ= 500-1200 nm, the optic band gap of 3.42 eV and the quadratic electro-optic (EO) coefficient of 3.38 x 10-17(m/V)2have been measured in the films. Due to the large EO coefficient and the micrometric thickness, the as-developed PLZT films have great potential in developing longitudinal-or transverse-type EO devices in electric and optic field


2019 ◽  
Vol 39 (1) ◽  
pp. 0131001
Author(s):  
黎志文 Li Zhiwen ◽  
陆华 Lu Hua ◽  
李扬武 Li Yangwu ◽  
焦晗 Jiao Han ◽  
赵建林 Zhao Jianlin

2019 ◽  
Vol 25 (3) ◽  
pp. 1-7 ◽  
Author(s):  
Hasan Kocer ◽  
Ahmet Ozer ◽  
Serkan Butun ◽  
Kevin Wang ◽  
Junqiao Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document