Age-dependent changes in spontaneous frequency of micronucleated erythrocytes in bone marrow and DNA damage in peripheral blood of Swiss mice

Author(s):  
Hari N. Bhilwade ◽  
S. Jayakumar ◽  
R.C. Chaubey
Toxics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 80
Author(s):  
Nazia Nazam ◽  
Mohammad Iqbal Lone ◽  
Abid Hamid ◽  
Talal Qadah ◽  
Alaa Banjar ◽  
...  

Dimethoate (DM) is an organophosphorus (OP) pesticide with wide use in the pest control. Its persistence in crops and soils could possibly cause adverse health consequences in humans as well as other non-target species. Since molecular studies confirming potential genotoxicity of DM have not been previously reported, the acute in vivo toxicological impact was evaluated in Wistar rats. Significant micronuclei induction and metaphase chromosome abnormalities in bone marrow cells exposed to three different DM doses (20, 40 and 60 mg/kg-bw) at multiple treatment durations (24, 48 and 72 h) indicated positive dose response relationship, confirming its genotoxic and cytotoxic potential. Significant mitotic index decrease was seen in dosed animals compared to vehicle control. The study used peripheral blood comet assay, indicating DM-mediated damage to DNA at all exposure levels in a time responsive manner. These assays were found to be an effective, precise, and fast technique with applied value in biomonitoring studies. Cell cycle and apoptosis along with mitochondrial membrane potential (MMP) in flow cytometric analyses confirmed DM exposure decreased MMP, affected the cell cycle, and inflicted DNA damage, which led to cellular apoptosis of leukocytes culminating into immunotoxic effects. The in silico experiments consequently augmented that DM showed acceptable binding energy value for Cyclin A2, suggesting that it could inhibit the cell cycle progression by inhibiting cyclin A2.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3425-3425
Author(s):  
Kasiani C. Myers ◽  
Gretchen A Radloff ◽  
Melissa Scholz ◽  
Lisa Campbell ◽  
Jennifer E Hauser ◽  
...  

Abstract Abstract 3425 Impaired anti-oxidant defenses and overproduction of reactive oxygen species (ROS) in individuals with Fanconi anemia (FA) are associated with a pro-oxidant state in this population. Cells derived from individuals with FA demonstrate increased sensitivity to DNA damage by ambient oxygen and increased frequency of chromosomal aberrations. Studies in animals and human subjects indicate that higher levels of and increased sensitivity to both ROS and tumor necrosis factor-alpha in individuals with FA play key roles in the pathogenesis of bone marrow failure (BMF) and neoplastic transformation. Accumulation of somatic DNA damage can be assessed using the Glycophorin A assay (GPA), which is designed to detect potentially inactivating mutations caused by chromosome loss, large deletions, or recombination events at the erythrocyte GPA locus. Previous cross-sectional studies in individuals with FA have shown a markedly increased frequency of GPA variant cells, demonstrating increased DNA damage. Knowledge regarding the timecourse of the accumulation of this somatic DNA damage is lacking. The goal of the current study is to evaluate serum ROS levels and accumulation of somatic DNA damage in individuals with FA to better understand the contribution of oxidative stress to disease phenotype and progression to marrow failure or malignant transformation. ROS levels were assessed ex vivo from peripheral blood and bone marrow of individuals with FA and healthy controls. We used a flow cytometric method to quantify ROS level by incubation of samples with CM-H2DCFDA, a cell-permeable fluorescence dye that reacts to a broad spectrum of ROS. Peripheral blood was also serologically typed on first submission using anti-M and anti-N sera. As only heterozygous (MN) individuals are informative, only these individuals were studied further. We used the GPA assay to quantify the accumulation of somatic cell damage in peripheral blood samples as measured by GPA variant cell frequencies. Peripheral blood and/or bone marrow samples from 19 individuals with FA and normal controls were evaluated for ROS on 23 occasions. ROS levels were variable, with 13 of the FA patients demonstrating high levels of ROS as measured by MFI signal strength. Overall ROS levels in individuals with FA were higher than those of normal control individuals (132% of control ROS levels, p<0.09, see Table). When stratified by age, older individuals with FA (age ≥10 years) had significantly higher ROS than normal controls (159% of control levels, p<0.05). Evaluation of 32 children at our center with FA by MN genotyping has identified 13 who are MN heterozygotes eligible for GPA testing. The frequency of NO and NN variant cell frequencies were markedly increased in children with FA (range of 1.2 to 187.5 fold and 0.46 to 201.8 fold over controls respectively). Additionally, longitudinal samples over a 5 year period revealed stable elevation of NO variant frequency with increasing NN variant cell frequency. NN variant frequency was closer to normal in younger individuals with FA and progressively increased with age and development of bone marrow failure.Mean age (years)ROS (% normal control)p-valueAll FA10.21320.09FA age ≥ 10 years12.81590.05FA age < 10 years7.7910.31 We demonstrate that individuals with FA have increased levels of ROS, and that ROS seems to increase with age. This correlates with accumulation of somatic DNA damage over time in this patient population. We hypothesize that ROS levels are low in younger FA individuals and progressively increase with age, resulting in accumulation of DNA damage. Additional longitudinal studies evaluating timecourse, intra-individual variability, and effects of complementation as well as environmental triggers are underway. We expect these studies to identify biomarkers that allow for earlier diagnosis leading to more timely therapy and to elucidate additional targets for novel therapeutic interventions to prevent BMF and myelodysplastic/leukemic transformation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 144-144 ◽  
Author(s):  
Sheng Wei ◽  
Erika Adriana Eksioglu ◽  
Xianghong Chen ◽  
Thomas Cluzeau ◽  
Ashley Basiorka ◽  
...  

Abstract Recent studies suggest that aging-associated inflammation, or "inflammaging", contributes to genetic instability and MDS predisposition. Although innumerable somatic genetic events have been annotated in recent years, including many that are not unique to MDS, they are not sufficient for disease initiation. The precise underlying mechanisms conducive to the emergence of these genetic events also remain to be delineated. We reported that bone marrow (BM) myeloid derived suppressor cells (MDSC) activated by the damage associated molecular pattern (DAMP) protein S100A9, promote ineffective hematopoiesis and the development of MDS. Inflammaging associated alterations in metabolism have been implicated in predisposition to cancer development with age. Here we report that S100A9 and ROS-induced inflammaging are associated with insulin resistance and hyperglycemia in the BM microenvironment that triggers activation of adaptive oncogenic pathways and genomic instability in HSPC. Glucose concentrations were markedly elevated in MDS BM plasma vs. age-matched controls, and directly correlated with S100A9 concentration (r=0.513, P=0.003, n=41). The magnitude of BM-glucose elevation significantly exceeded that in the peripheral blood and negatively correlated with the proportion of HSPC while directly correlating with BM MDSC percentage. S100A9 transgenic (Tg) mice displayed age-dependent elevation of glucose in peripheral blood and BM when compared to wild type mice accompanied by accumulation of somatic mutations (SM) by sequencing in aged S100A9-Tg compared to younger counterparts. NGS of 38 primary MDS BM specimens showed that SM common to MDS, such as those involving ASXL1, U2AF1 and DNMT3A, we re present only in high glucose stratified MDS-BM specimens (glucose > 110 ug/ml). Furthermore, there was a strong correlation between the cellular ROS/nuclear-β-catenin to DNA damage (γH2AX+ cells) linking S100A9-induced ROS accumulation to genetic instability. Elevation in BM plasma glucose was specifically associated with upregulation of the fat mass and obesity associated (FTO) transcript and protein in both MDS BM and S100A9Tg mice. FTO is a risk factor for type 2 diabetes, and encodes an α-ketoglutarate-dependent dioxygenase that functions as an RNA demethylase specific for N 6-methyladenosine (m6A) residues, targeted by splicing factors. Both human and murine MDS specimens displayed decreased m6A mRNA methylation compared to controls. FTO knockdown with CRISPR increased mRNA m6A methylation in MDS primary specimens, whereas overexpression of FTO led to a corresponding decrease that was enhanced by S100A9 stimulation. Moreover, S100A9 treatment induced FTO and demethylation of m6A mRNA in human and murine BM cells. These effects were accompanied by disruption of spliceosomes in the nucleus, as demonstrated by delocalization of SRSF2 from nuclear speckles into the cytoplasm where they colocalize with FTO in MDS patients. Interestingly, from the S100A9Tg mouse sequencing studies, we discovered that the mutation hotspots were in locations specific for histone H3K27 acetylation which have been previously linked to genomic instability, as well as splicing regulation, and regulated by histone deacetylase 1 (HDAC1). Reduced HDAC1 levels are known to make cells hypersensitive to DNA-damaging insults, such as those inducing ROS, similar to what we observed with treatment of S100A9 in healthy human bone marrow, MDS patient samples and S100A9Tg mice. Furthermore, this correlated with increased levels of DNA damage in our patient samples and in our murine S100A9Tg model as measured by phosphorylated γH2AX histones. Our studies provide a biological rationale for the initiation of DNA-genetic damage under inflammatory senescence conditions in MDS. These findings demonstrate that S100A9-induced inflammation activates a signaling cascade that enhances development of splicing variants and somatic gene mutations critical to MDS pathogenesis. Disclosures List: Celgene Corporation: Honoraria, Research Funding.


2009 ◽  
Vol 69 (4) ◽  
pp. 1141-1147 ◽  
Author(s):  
JC. Ribeiro ◽  
SF. Andrade ◽  
JK. Bastos ◽  
EL. Maistro

The genotoxic effect of the Austroplenckia populnea chloroform fraction from barkwood extract was tested in vivo on peripheral blood cells of Swiss mice with the comet assay (SCGE), and the clastogenic effect was investigated on peripheral blood cells of Swiss mice and bone marrow cells of Wistar rats, with the micronucleus and chromosome aberrations tests. The animals were treated by gavage with 3 concentrations of the extract: 300, 600 and 900 mg.kg-1. Peripheral blood cells of Swiss mice were collected 4 and 24 hours after the treatment to the SCGE assay and 48 and 72 hours to the micronucleus test. Bone marrow cells of Wistar rats were collected 24 hours after the treatment to the micronucleus and chromosome aberration tests. The results showed that the A. populnea chloroform fraction induced an increase in the average number of DNA damage in peripheral blood cells at the three concentrations tested, but this increase was not statistically significant. In the micronucleus and chromosome aberrations test, no significant increase was observed in the mean number of micronucleated polychromatic erythrocytes (MNPCE) of Swiss mice or MNPCE or chromosome aberrations for the rat bone marrow cells, for any of the tested doses. Our findings enable us to conclude that by the comet assay, A. populnea chloroform fraction from barkwood extract showed no genotoxic effects, and by the micronucleus and chromosome aberration tests, the extract fraction showed no clastogenic/aneugenic effects on the rodent cells tested.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 797-797
Author(s):  
Krasimira Rozenova ◽  
Jing Jiang ◽  
Chao Wu ◽  
Junmin Wu ◽  
Bernadette Aressy ◽  
...  

Abstract The balance between self-renewal and differentiation of hematopoietic stem cells (HSCs) is maintained by cell intrinsic and extrinsic mechanisms, including tight regulation of signaling pathways such as Tpo-Mpl and SCF-ckit. Posttranslational modifications, such as phosphorylation and ubiquitination, regulate these pathways. While the role of protein phosphorylation is well established, the importance of ubiquitination in HSC self-renewal has not been well addressed. It is known that of the seven different lysines on ubiquitin, Lys48 polyubiquitination is a marker for protein degradation, and Lys63 polyubiquitination is associated with regulation of kinase activity, protein trafficking, and localization. In this study, we provide evidence that the adaptor protein MERIT40 has multiple roles in hematopoietic stem/progenitor cells (HSPCs). MERIT40 is a scaffolding protein shared by two distinct complexes with Lys63 deubiquitinase (DUB) activities: the nuclear RAP80 complex with a known role in DNA damage repair in breast/ovarian cancer cells, whereas the functions of the cytoplasmic BRISC remains less characterized. MERIT40 is important for integrity of both complexes, and its deficiency leads to their destabilization and a >90% reduction in deubiquitinase activity. By using MERIT40 knockout (M40-/-) mice, we found that lack of MERIT40 leads to a two-fold increase in phenotypic and functional HSCs determined by FACS and limiting dilution bone marrow transplantation (BMT), respectively. More importantly, M40-/- HSCs have increased regenerative capability demonstrated by increased chimerism in the peripheral blood after BMT of purified HSCs. The higher self-renewal potential of these HSCs provides a survival advantage to M40-/- mice and HSCs after repetitive administration of the cytotoxic agent 5-flurouracil (5FU). MERIT40 deficiency also preserves HSC stemness in culture as judged by an increase in peripheral blood chimerism in recipient mice transplanted with M40-/- Lin-Sca1+Kit+ (LSK) cells cultured in cytokines for nine days compared to recipient mice receiving cultured wildtype (WT) LSK cells. In contrast to the increased HSC homeostasis and superior stem cell activity due to MERIT40 deficiency, M40-/- mice are hypersensitive to DNA damaging agents caused by inter-cross linking (ICL), such as Mitomycin C (MMC) and acetaldehydes that are generated as side products of intracellular metabolism. MMC injection caused increased mortality in M40-/- mice compared to WT controls attributable to DNA damage-induced bone marrow failure. MMC-treated M40-/- mice showed marked reduction in LSK progenitor numbers accompanied by increased DNA damage, in comparison to WT mice. Consistent with the in vivo studies, M40-/- progenitor cells are hypersensitive to MMC and acetaldehyde treatment in a cell-autonomous manner in colony forming assays. ICL repair is known to require Fanconi Anemia (FA) proteins, an ICL repair network of which mutations in at least 15 different genes in humans cause bone marrow failure and cancer predisposition. Thus, M40-/- mice represent a novel mouse model to study ICL repair in HSPCs with potential relevance to bone marrow failure syndromes. Taken together, our data establishes a complex role of MERIT40 in HSPCs, warranting future investigation to decipher functional events downstream of two distinct deubiquitinating complexes associated with MERIT40 that may regulate distinct aspects of HSPC function. Furthermore, our findings reveal novel regulatory pathways involving a previously unappreciated role of K63-DUB in stem cell biology, DNA repair regulation and possibly bone marrow failure. DUBs are specialized proteases and have emerged as potential “druggable” targets for a variety of diseases. Hence, our work may provide insights into novel therapies for the treatment of bone marrow failure and associated malignancies that occur in dysregulated HSCs. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 87 (11) ◽  
pp. 1113-1119 ◽  
Author(s):  
S. Jayakumar ◽  
Hari N. Bhilwade ◽  
Pramod S. Dange ◽  
Haladhar D. Sarma ◽  
Ramesh C. Chaubey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document