On the role of liquated γ′ precipitates in weld heat affected zone microfissuring of a nickel-based superalloy

2005 ◽  
Vol 403 (1-2) ◽  
pp. 77-86 ◽  
Author(s):  
O.A. Ojo ◽  
M.C. Chaturvedi
Author(s):  
Michael Santella ◽  
X. Frank Chen ◽  
Philip Maziasz ◽  
Jason Rausch ◽  
Jonathan Salkin

AbstractA 50.8-mm-deep gas tungsten arc weld was made with matching filler metal in cast Haynes 282 alloy. The narrow-gap joint was filled with 104 weld beads. Visual and dye-penetrant inspection of cross-weld specimens indicated that the cast base metal contained numerous casting defects. No visible indications of physical defects were found in the weld deposit. The weld heat-affected zone was characterized by microcracking and localized recrystallization. The cause of the cracking could not be determined. Hardness testing showed that a softened region in the as-welded heat-affected zone was nearly eliminated by post-weld heat treatment. Tensile testing up to 816 °C showed that cross-weld specimen strengths ranged from 57 to 79% of the cast base metal tensile strength. The stress-rupture strengths of cross-weld specimens are within 20% of base metal reference data. Failures of both tensile and stress-rupture specimens occurred in the base metal.


2017 ◽  
Vol 36 (4) ◽  
pp. 309-325 ◽  
Author(s):  
Wangzhong Mu ◽  
Pär Göran Jönsson ◽  
Keiji Nakajima

AbstractIntragranular ferrite (IGF), which nucleates from specific inclusion surfaces in low alloy steels, is the desired microstructure to improve mechanical properties of steel such as the toughness. This microstructure is especially important in the coarse grain heat affected zone (CGHAZ) of weldments. The latest review paper focusing on the role of non-metallic inclusions in the IGF formation in steels has been reported by Sarma et al. in 2009 (ISIJ int., 49(2009), 1063–1074). In recent years, large amount of papers have been presented to investigate different issues of this topic. This paper mainly highlights the frontiers of experimental and theoretical investigations on the effects of inclusion characteristics, such as the composition, size distribution and number density, on the IGF formation in low carbon low-alloyed steels, undertaken by the group of Applied Process Metallurgy, KTH Royal Institute of Technology. Related results reported in previous studies are also introduced. Also, plausible future work regarding various items of IGF formation is mentioned in each section. This work aims to give a better control of improving the steel quality during casting and in the heat affected zone (HAZ) of weldment, according to the concept of oxide metallurgy.


1989 ◽  
Vol 5 (9) ◽  
pp. 913-917 ◽  
Author(s):  
X. X. Xu ◽  
Q. G. Cai ◽  
Y. Su ◽  
C. X. Hou ◽  
W. D. Ma

Sign in / Sign up

Export Citation Format

Share Document