An experimental investigation of the fatigue behavior of sisal fibers

2009 ◽  
Vol 516 (1-2) ◽  
pp. 90-95 ◽  
Author(s):  
Flavio de Andrade Silva ◽  
Nikhilesh Chawla ◽  
Romildo Dias de Toledo Filho
2020 ◽  
Author(s):  
T. Naresh Kumar ◽  
K. Muralidharan ◽  
Raghuram Pradhan ◽  
Ramya Suresh

Author(s):  
Kay Langschwager ◽  
Alexander Bosch ◽  
Eliane Lang ◽  
Jürgen Rudolph ◽  
Michael Vormwald ◽  
...  

Austenitic stainless steel of type X6CrNiNb18-10 (1.4550) is a widely used material in piping and components of nuclear power plants. The fatigue behavior of these components is often operationally determined by thermomechanical strains and corresponding stresses. Welded structures lead to complex stresses in the component and potential fatigue lifetime reductions. Various geometrical and microstructural inhomogeneities in welded structures represent the main factors of influence. Nevertheless, clear identification and quantification of various factors of influence are issues still to be resolved. Within the framework of an ongoing research project, the experimental investigation comprises uniaxial and biaxial fatigue experiments on welded joints which cover temperatures from 25°C to 350°C. Furthermore, a key issue deals with the thermomechanical fatigue behavior of machined and unmachined butt weld seams. A special focus is set on typical low cycle fatigue (LCF) tests in order to explain the behavior of the base material and the weld material to identify the influence of microstructural inhomogeneities. In addition, specimens manufactured directly from the pipe components are tested to examine the influence of the butt weld seam geometry. For a better understanding of the local strain effects, optical strain field measurements (OSFM) are conducted and used to validate numerical simulation. The finite element method (FEM) is utilized to expand the parameter space and identify the main parameters. Experimental and numerical results show that fatigue failure occurs either in the base metal in the vicinity of the welded zone or in the top layer of the weld, depending on the loading conditions. This knowledge is used to develop an approach to fatigue lifetime estimation.


2009 ◽  
Vol 9 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Ki-Weon Kang ◽  
Byeong-Choon Goo ◽  
Jae-Hoon Kim ◽  
Doo-Kie Kim ◽  
Jung-Kyu Kim

1994 ◽  
Vol 116 (1) ◽  
pp. 54-61 ◽  
Author(s):  
T. H. Krukemyer ◽  
A. Fatemi ◽  
R. W. Swindeman

An experimental investigation was conducted on Haynes Alloy 556 to study the fatigue behavior of the material at elevated temperatures. Fatigue tests were run at constant temperatures ranging from room temperature to 871°C with strain ranges from 0.265 to 1.5 percent resulting in lives between 102 and 106 cycles. Cyclic deformation properties were evaluated based on the fatigue data. Three fatigue life models were evaluated for their ability to predict the isothermal fatigue lives of the material. These included the Ostergren, Frequency Separation and Stress-Strain-Time models. Strengths and weaknesses of each model are discussed based on the experimental results.


Sign in / Sign up

Export Citation Format

Share Document