scholarly journals Microstructure evolution of commercial pure titanium during equal channel angular pressing

2010 ◽  
Vol 527 (3) ◽  
pp. 789-796 ◽  
Author(s):  
Y.J. Chen ◽  
Y.J. Li ◽  
J.C. Walmsley ◽  
S. Dumoulin ◽  
P.C. Skaret ◽  
...  
2014 ◽  
Vol 937 ◽  
pp. 162-167 ◽  
Author(s):  
Xiao Mei He ◽  
Shan Shan Zhu ◽  
Cong Hui Zhang

Equal Channel Angular Pressing (ECAP) and Surface Mechanical Attrition (SMAT) are the two Severe Plastic Deformation (SPD) processes that have been used to process ultrafine grained (UFG) materials. These two kinds of processes have been used to refine the grain size of coarse-grained commercial pure titanium (CP-Ti). The development of microstructure during equal channel angular pressing (ECAP) and surface mechanical attrition (SMAT) of commercial pure titanium (CP-Ti) is investigated to establish the mechanisms of grain refinement. Based on the various experimental results and analysis, it has been found that the high-strain-rate and many direction loading is conducive to the formation of nanograins and also the grains with less than 100 nm cannot be obtained by the single equal channel angular pressing (ECAP).


2011 ◽  
Vol 682 ◽  
pp. 171-176 ◽  
Author(s):  
Xiao Nong Cheng ◽  
Hong Xing Xu ◽  
Xiao Jing Xu ◽  
Zeng Lei Zhang

Equal channel angular pressing (ECAP) of a quenched commercial pure titanium (CP-Ti) (grade 2) has been successfully performed at liquid nitrogen temperature with an imposed equivalent strain of about ∼0.5, and its microstructures, tensile properties and dislocation strengthening were investigated. High-resolution transmission electron microscopy (HRTEM) shows that the ECAPed CP-Ti presented a microstructure containing lattice distortions, dislocations, stacking defects and deformation twins. Tensile tests indicate that the ECAPed CP-Ti had yield strength of ~700 MPa (40 % higher than that of the unECAPed CP-Ti) and a high level of tensile ductility (~28%). X-ray diffractometer (XRD) data indicate that the ECAP processing not only broaden the XRD peaks significantly but also decreased texture considerably. The theoretical analysis by using Taylor equation based on the coherent diffraction domain size and the lattice micro-strain obtained from XRD line broadening analysis illustrates that ECAP-resulted dislocation made a strengthening contribution of about ~35.1 %.


2014 ◽  
Vol 609-610 ◽  
pp. 495-499
Author(s):  
Guo Cheng Ren ◽  
Xiao Juan Lin ◽  
Shu Bo Xu

The microstructure and material properties of AZ31 magnesium alloy are very sensitive to process parameters, which directly determine the service properties. To explore and understand the deformation behavior and the optimization of the deformation process, the microstructure evolution during equal channel angular pressing was predicted by using the DEFORM-3D software package at different temperature. To verify the finite element simulation results, the microstructure across the transverse direction of the billet was measured. The results show that the effects strain and deformation temperatures on the microstructure evolution of AZ31 magnesium during ECAP process are significant, and a good agreement between the predicted and experimental results was obtained, which confirmed that the derived dynamic recrystallization mathematical models can be successfully incorporated into the finite element model to predict the microstructure evolution of ECAP process for AZ31 magnesium.


Sign in / Sign up

Export Citation Format

Share Document