Molecular dynamics simulations on size dependent tensile deformation behaviour of [110] oriented body centred cubic iron nanowires

2015 ◽  
Vol 640 ◽  
pp. 98-105 ◽  
Author(s):  
G. Sainath ◽  
B.K. Choudhary
2009 ◽  
Vol 60-61 ◽  
pp. 315-319 ◽  
Author(s):  
W.W. Zhang ◽  
Qing An Huang ◽  
H. Yu ◽  
L.B. Lu

Molecular dynamics simulations are carried out to characterize the mechanical properties of [001] and [110] oriented silicon nanowires, with the thickness ranging from 1.05nm to 3.24 nm. The nanowires are taken to have ideal surfaces and (2×1) reconstructed surfaces, respectively. A series of simulations for square cross-section Si nanowires have been performed and Young’s modulus is calculated from energy–strain relationship. The results show that the elasticity of Si nanowires is strongly depended on size and surface reconstruction. Furthermore, the physical origin of above results is analyzed, consistent with the bond loss and saturation concept. The results obtained from the molecular dynamics simulations are in good agreement with the values of first-principles. The molecular dynamics simulations combine the accuracy and efficiency.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
S. K. Joshi ◽  
Kailash Pandey ◽  
Sanjeev K. Singh ◽  
Santosh Dubey

Metallic nanowires show great potential for applications in miniaturization of electronic devices due to their extraordinary mechanical strength and electrical properties. Experimental investigations of these properties are difficult due to their size and complications in performing experiments at such length scales. Computational techniques based on classical molecular dynamics simulations (using LAMMPS) provide an effective mean to understand the mechanical deformation behaviour of such nanowires with considerable accuracy and predictability. In the present investigation, we have discussed the deformation behaviour of Au nanowires due to tensile loading using classical molecular dynamics simulations (LAMMPS). The effect of strain rate and temperature on the yield strength of the nanowire has been studied in detail. The deformation mechanisms have also been discussed.


2020 ◽  
Vol 38 ◽  
pp. 100744
Author(s):  
Firaz Ebrahem ◽  
Jan Stratmann ◽  
Marcus Stoffel ◽  
Bernd Markert ◽  
Franz Bamer

2020 ◽  
Vol 978 ◽  
pp. 428-435
Author(s):  
Krishna Chaitanya Katakam ◽  
Natraj Yedla

The mechanical properties and deformation mechanism of nickel nanowire of dimension 100 Å (x-axis) × 1000 Å (y-axis) × 100 Å (z-axis) containing a single linear surface defect is studied at different temperatures using molecular dynamics simulations. The defect is created by deleting a row of atoms on the surface and is inclined at 25° to the loading axis. The tensile test is carried out at 0.01 K, 10 K, 100 K and 300 K temperature and 108 s-1strain rate. To determine the effect of temperature on the stress-strain curves, fracture and failure mechanism, a thorough investigation has taken place. Maximum strength of 21.26 GPa is observed for NW deformed at 0.01 K temperature and the strength decreased with increase in temperature. Through slip lines, the deformation relief pattern taken place by developing the extrusion areas along with intrusion over the surface defect area in all NWs deformed at respective temperatures. Further it is observed that fracture strains decrease with increase in temperature. After yielding, stacking faults associated with dislocations are generated by slip on all four {111} planes. Different type of dislocations with both intrinsic and extrinsic stacking faults are noticed. Out of all dislocation densities, Shockley partial dislocation densities has recorded a maximum value.


Sign in / Sign up

Export Citation Format

Share Document