Correlation of grain boundary precipitate characteristics with fracture and fracture toughness in an Mg-8Al-0.5 Zn alloy

2017 ◽  
Vol 706 ◽  
pp. 192-200 ◽  
Author(s):  
A. Zindal ◽  
J. Jain ◽  
R. Prasad ◽  
S.S. Singh ◽  
P. Cizek
2012 ◽  
Vol 625 ◽  
pp. 304-307 ◽  
Author(s):  
Hai Zhou Yu ◽  
Wen Jun Liu ◽  
Lian Ying ◽  
Min You

Four series of cermets with the SiC whisker content between 0 and 1.0 wt.% were prepared by vacuum sintering. The transverse rupture strength (TRS), hardness (HRA) and fracture toughness (KIC) were also measured. The SiC whiskeraddition was located at the grain boundaries, which prevented grain boundary migration and restrained the grain growth. However, an increasing SiC whisker content decreased the wettability of the binder on the Mo2FeB2 hard phase. The highest TRS and fracture toughness was found for the cermets with 0.5 wt.% SiC whisker addition, whereas the cermets without SiC whisker addition exhibited the maximum hardness.


2021 ◽  
Vol 2021 (3) ◽  
pp. 77-85
Author(s):  
K. M. Borysovska ◽  
◽  
N. M. Marchenko ◽  
Yu. M. Podrezov ◽  
S. O. Firstov ◽  
...  

The (DD) method was used to model the formation of the plastic zone of the top of the cracks in polycrystalline molybdenum. Special attention was paid to take into account the interaction of dislocations in the plastic zone with grain boundaries. Structural sensitivity of fracture toughness was analyzed under brittle-ductile condition. Simulations were performed for a range of grain sizes from 400 to 100 μm, at which a sudden increase in fracture toughness with a decrease of grain size was experimentally shown. We calculated the value of K1c taking into account the shielding action of dislocations. The position of all dislocations in the plastic zone at fracture moment was calculated. Based on these data, we obtained the dependences of dislocation density on the distance from the crack tip thereby confirming significant influence of the grain boundaries on plastic zone formation. At large grain sizes, when the plastic zone does not touch the boundary, the distribution of dislocations remained unchanged. As grains reduce their size to size of the plastic zone, they start formating a dislocation pile – up near the boundaries. Dislocations on plastic zone move slightly toward the crack tip, but the density of dislocations in the middle of the grain remains unchanged, and fracture toughness remains almost unchanged. Further reduction of the grain size leads to the Frank-Reed source activation on the grain boundary Forming dislocation pile-up of the neighbor grains. Its stress concentration acts on dislocations of the first grain and causes redistribution of plastic zone dislocations. If the reduction in grain size is not enough to form a strong pile-up, density of dislocations on plastic zone increases slightly and crack resistance increases a few percent. Further reduction of grains promotes strong pile-up, dislocations move to crack tip, and its density on plastic zone increases. Crack is shielded and fracture toughness increases sharply. The calculation showed that the fracture toughness jump is observed at grain sizes of 100—150 μm, in good agreement with the experiment. Keywords: dislocation dynamics simulation, molybdenum, fracture toughness, grain size, plastic zone, brittle-ductile transition.


2017 ◽  
Author(s):  
S. Mohan Kumar ◽  
V. Ravi Kumar ◽  
M. E. Shashi Kumar ◽  
H. K. Govindaraju

2019 ◽  
Vol 167 ◽  
pp. 34-41 ◽  
Author(s):  
Wilmer Velilla-Díaz ◽  
Alejandro Pacheco-Sanjuan ◽  
Habib R. Zambrano

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 263 ◽  
Author(s):  
Xinliang Li ◽  
Jiangang Guo

The fracture properties of pre-cracked monocrystalline/polycrystalline graphene were investigated via a finite element method based on molecular structure mechanics, and the mode I critical stress intensity factor (SIF) was calculated by the Griffith criterion in classical fracture mechanics. For monocrystalline graphene, the size effects of mode I fracture toughness and the influence of crack width on the mode I fracture toughness were investigated. Moreover, it was found that the ratio of crack length to graphene width has a significant influence on the mode I fracture toughness. For polycrystalline graphene, the strain energy per unit area at different positions was calculated, and the initial fracture site (near grain boundary) was deduced from the variation tendency of the strain energy per unit area. In addition, the effects of misorientation angle of the grain boundary (GB) and the distance between the crack tip and GB on mode I fracture toughness were also analyzed. It was found that the mode I fracture toughness increases with increasing misorientation angle. As the distance between the crack tip and GB increases, the mode I fracture toughness first decreases and then tends to stabilize.


2006 ◽  
Vol 55 (2) ◽  
pp. 127-129 ◽  
Author(s):  
K MATSUDA ◽  
S IKENO ◽  
T SATO ◽  
Y UETANI

2004 ◽  
Vol 818 ◽  
Author(s):  
R. O. Ritchie ◽  
X.-F. Zhang ◽  
L. C. De Jonghe

AbstractThrough control of the grain-boundary structure, principally in the nature of the nanoscale intergranular films, a silicon carbide with a fracture toughness as high as 9.1 MPa.m1/2 has been developed by hot pressing β-SiC powder with aluminum, boron, and carbon additions (ABC-SiC). Central in this material development has been systematic transmission electron microscopy (TEM) and mechanical characterizations. In particular, atomic-resolution electron microscopy and nanoprobe composition quantification were combined in analyzing grain boundary structure and nanoscale structural features. Elongated SiC grains with 1 nm-wide amorphous intergranular films were believed to be responsible for the in situ toughening of this material, specifically by mechanisms of crack deflection and grain bridging. Two methods were found to be effective in modifying microstructure and optimizing mechanical performance. First, prescribed post-annealing treatments at temperatures between 1100 and 1500°C were seen to cause full crystallization of the amorphous intergranular films and to introduce uniformly dispersed nanoprecipitates within SiC matrix grains; in addition, lattice diffusion of aluminum at elevated temperatures was seen to alter grain-boundary composition. Second, adjusting the nominal content of sintering additives was also observed to change the grain morphology, the grain-boundary structure, and the phase composition of the ABC-SiC. In this regard, the roles of individual additives in developing boundary microstructures were identified; this was demonstrated to be critical in optimizing the mechanical properties, including fracture toughness and fatigue resistance at ambient and elevated temperatures, flexural strength, wear resistance, and creep resistance.


Sign in / Sign up

Export Citation Format

Share Document