ni3al phase
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Jinjie Zhou ◽  
Yingle He ◽  
Jinchuan Shen ◽  
Fadl A Essa ◽  
Jingui Yu

Abstract Nickel-based single crystal alloys have excellent mechanical properties due to its unique two-phase structure and interface. Therefore, molecular dynamics methods were used to simulate nanoindentation and microstructural evolution. We found the indenter reaction force and hardness of the Ni3Al phase is the largest. The pop-in event in Ni3Al phase is more obvious than that in the Ni phase and Ni/Ni3Al phase. Because lots of dislocations in the Ni3Al phase break through the barrier of the interface and cut into the Ni phase, while dislocations in the Ni phase only slip inside the Ni phase. Moreover, we found that the position of the starting point of the adhesion force recovery is mainly related to the elastic recovery of the material. The stronger the elastic recovery of the phase, the smaller the depth value corresponding to the starting point of the recovery. We further studied the variation of potential energy with indentation depth and found that the change of wave trough of the load-displacement (P-h) curve is related to stacking fault energy. This study has important theoretical guiding significance for the in-depth understanding and engineering application of the mechanical properties of nickel-based single crystal alloys.


2021 ◽  
Vol 93 (3) ◽  
pp. 49-56
Author(s):  
Jakub Ciftci ◽  
Ryszard Sitek ◽  
Jarosław Mizera

The group of nickel based superalloys produced in the DMLS (Direct Metal Laser Sintering) process is limited to materials, which produced conventionally do not have properties to allow to use them for rotating components of aircraft engines. This work attempts to optimize the technological parameters of the DMLS process for the Inconel 713C nickel superalloy. A heat treatment was performed for selected samples to investigate the effect on the morphology of the Ni3Al phase. The microstructure analysis and hardness tests were carried out. The material after the DMLS process was characterized by the presence of much smaller dendrites than the cast material and exceeded its hardness. For the tested variants of heat treatment, the material was characterized by smaller sizes of the Ni3Al phase. In order to ensure the stability of the microstructure, an optimization of the dedicated heat treatment after the DMLS process is required, as the standard heat treatment for Inconel 713C cast nickel superalloy does not fully recrystallize the material.


2021 ◽  
Vol 174 ◽  
pp. 111032
Author(s):  
M. Seyring ◽  
F. Wanierke ◽  
T. Kaaden ◽  
S. Lippmann ◽  
M. Rettenmayr

2021 ◽  
Vol 4 ◽  
pp. 25-30
Author(s):  
O. B. Berdnik ◽  
◽  
P. Yu. Kikin ◽  
V. N. Perevezentsev ◽  
E.N. Razov ◽  
...  

The regularities of changes in the structure and phase composition of the thermal protective aluminide-nickel coating (Ni — 45 %; Al — 14 %; Co — 22 %; Cr — 18.9 %; Fe — 0.15 %; Nb — 0.14 %; Y — 0.09 %; Ca — 0.06 %; Mn — 0.01 %; C — 0.15 %; Si — 0.15 %; S — 0.006 %) after exposure to short-term pulsed heat fluxes of various power, created by the radiation of a pulse-periodic laser LRS-150A with a radiation wavelength λ = 1.06 µm and a pulse duration τ = 12·10–3 s. The radiation energy was E = 5, 10, and 15 J. Microstructural analysis and the elemental composition of the resulting coating were carried out as well as analysis of the phase composition. X-ray microanalysis of the coating was also carried out. In the initial state and after irradiation of the coating with a heat flux of power P = 7·103 W/cm2, light microregions are observed in the micrographs of the surface. These regions do not have clearly defined external boundaries and consist of the NiAl phase and a small amount of the Ni3Al phase with the presence of inclusions of particles containing a solid solution of Ni – Co – Cr. After irradiation of the coating with heat fluxes of higher power (P = 1.7·104 W/cm2 and P = 2.2·104 W/cm2), large convex formations appeared on its surface, consisting mainly of Ni3Al and NiAl phases. On micrographs of the surface, they appear as white areas with well-defined outer boundaries. The content of the Ni3Al phase in them in comparison with the initial state increased, and the content of the NiAl phase decreased, while the particles of inclusions of Ni, Co, and Cr disappeared. It can be assumed that an increase in the Ni3Al content is associated with the dissolution of particles of a solid solution of Ni – Co and Cr in the melt and the subsequent diffusion of nickel into the NiAl phase. When exposed to a heat flux of power P = 2.2·104 W/cm2, microcracks appear on the areas of the coating surface covered with aluminum oxide.


2020 ◽  
Vol 2020 (11) ◽  
pp. 36-43
Author(s):  
Sergey Himuhin ◽  
Kseniya Eremina ◽  
Gennadiy Dzyuba

In the paper there are shown results on roughness parameter decrease on the electrospark coatings of 20H13 and 30 steel surfaces by means of smoothing with the use of the plant for non-abrasive ultrasonic finishing (NUF). For the coating formation there were used Ni, Cu and an intermetallic alloy based on Ni3Al phase. At the NUF increase of coatings formed with the use of Cu there is a roughness growth caused with material “pickup” upon an indenter. It is determined that for smoothing the surfaces with electrospark coating with the assurance of roughness considerable decrease a six-fold NUF processing is required. A microstructure of the coating obtained with the use of anode material based on the Ni3Al alloy consists of columnar crystal grains the cross-section dimensions of which change from some mkm to several tens of nm. Crystal grains are directed mainly normally regarding a cathode surface. By means of micro-X-ray spectrum analysis there is defined an elementary composition of columnar crystal grains corresponding to the alloy of the Nix-Aly-Fez system which is alloyed with Cr and contains admixtures of Si and Mn. By means of the microstructure investigation of the coating smoothed surface in a number of areas there are revealed crystal grains with the signs of plastic deformation.


2019 ◽  
Vol 120 (4) ◽  
pp. 345-352
Author(s):  
X. R. Zhou ◽  
Y. S. Li ◽  
Z. L. Yan ◽  
C. W. Liu ◽  
L. H. Zhu

Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 613 ◽  
Author(s):  
Maryana Zagula-Yavorska

Rhodium-modified as well as palladium-modified and non-modified aluminide coatings on CMSX-4 Ni-based superalloy were oxidized in air atmosphere at 1100 °C. Uncoated substrate of CMSX-4 superalloy was also oxidized. The microstructure of coatings before oxidation consists of two layers: an additive and an interdiffusion one. The NiAl intermetallic phase was found in the microstructure of non-modified coatings, while the (Ni,Rh)Al intermetallic phase was observed in the microstructure of rhodium-modified aluminide coatings before oxidation. The (Ni,Pd)Al phase of palladium-modified aluminide coatings in the additive layer was observed before oxidation. The microstructure of the oxidized non-modified coatings consists of the γ’-Ni3Al phase. The oxide layer (10 μm thick) consists of the NiAl2O4 phase and porous Ni-rich oxide. The oxide layers (5 μm thick) formed on the surface of rhodium or palladium-modified coatings consist of the α-Al2O3 phase and the top layer of the NiAl2O4 phase. Al-depleted (30 at. %) β-NiAl grains besides the γ’-Ni3Al phase were found in the rhodium-modified coating, while only the γ’-Ni3Al phase region was revealed in the palladium-modified coating, Rhodium-modified coatings with small rhodium content (0.5 μm rhodium layer thick) can be an alternative for palladium-modified ones with bigger palladium content (3 μm thick palladium layer).


Sign in / Sign up

Export Citation Format

Share Document