Achieving high strength and ductility in double-sided friction stir processing 7050-T7451 aluminum alloy

2017 ◽  
Vol 707 ◽  
pp. 193-198 ◽  
Author(s):  
Wenjing Yang ◽  
Hua Ding ◽  
Yongliang Mu ◽  
Jizhong Li ◽  
Wenjing Zhang
2012 ◽  
Vol 735 ◽  
pp. 316-321 ◽  
Author(s):  
Yutaka Matsuda ◽  
Goroh Itoh ◽  
Yoshinobu Motohashi

Friction stir processing (FSP) causes fine-equiaxed microstructure[1]. In this study, microstructure and mechanical properties of a 7075 aluminum alloy subjected to multipass FSP, MP-FSP, are assessed. A new zone, PBZ, has been discovered between stir zones, SZs. The SZs are composed of fine-equiaxed grains, while PBZs are composed of two types of (fine-equiaxed and coarse-elongated) grains, both of which are still finer than those of base metal. Elongation at 773K of MP-FSPed specimen becomes larger than that of base metal, based on superplastic deformation due to the finer microstructure. Local elongation is smaller in PBZ than in SZ.


Author(s):  
A. Tajiri ◽  
Y. Uematsu ◽  
T. Kakiuchi ◽  
Y. Suzuki

A356-T6 cast aluminum alloy is a light weight structural material, but fatigue crack initiates and propagates from a casting defect leading to final fracture. Thus it is important to eliminate casting defects. In this study, friction stir processing (FSP) was applied to A356-T6, in which rotating tool with probe and shoulder was plunged into the material and travels along the longitudinal direction to induce severe plastic deformation, resulting in the modification of microstructure. Two different processing conditions with low and high tool rotational speeds were tried and subsequently fully reversed fatigue tests were performed to investigate the effect of processing conditions on the crack initiation and propagation behavior. The fatigue strengths were successfully improved by both conditions due to the elimination of casting defects. But the lower tool rotational speed could further improve fatigue strength than the higher speed. EBSD analyses revealed that the higher tool rotational speed resulted in the severer texture having detrimental effects on fatigue crack initiation and propagation resistances.


2021 ◽  
Vol 23 (3) ◽  
pp. 72-83
Author(s):  
Kirill Kalashnikov ◽  
◽  
Andrey Chumaevskii ◽  
Tatiana Kalashnikova ◽  
Aleksey Ivanov ◽  
...  

Introduction. Among the technologies for manufacturing rocket and aircraft bodies, marine vessels, and vehicles, currently, more and more attention is paid to the technology of friction stir welding (FSW). First of all, the use of this technology is necessary where it is required to produce fixed joints of high-strength aluminum alloys. In this case, special attention should be paid to welding thick-walled blanks, as fixed joints with a thickness of 30.0 mm or more are the target products in the rocket-space and aviation industries. At the same time, it is most prone to the formation of defects due to uneven heat distribution throughout the height of the blank. It can lead to a violation of the adhesive interaction between the weld metal and the tool and can even lead to a destruction of the welding tool. The purpose of this work is to reveal regularities of welding tool destruction depending on parameters of friction stir welding process of aluminum alloy AA5056 fixed joints with a thickness of 35.0 mm. Following research methods were used in the work: the obtaining of fixed joints was carried out by friction welding with mixing, the production of samples for research was carried out by electric erosion cutting, the study of samples was carried out using optical metallography methods. Results and discussion. As a result of performed studies, it is revealed that samples of aluminum alloy with a thickness of 35.0 mm have a heterogeneous structure through the height of weld. There are the tool shoulder effect zone and the pin effect zone, in which certain whirling of weld material caused by the presence of grooves on tool surface is distinctly distinguished. It is shown that the zone of shoulders effect is the most exposed to the formation of tunnel-type defects because of low loading force and high welding speeds. It is revealed that tool destruction occurs tangentially to the surface of the tool grooves due to the high tool load and high welding speeds.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ch. Mohana Rao ◽  
K. Mallikarjuna Rao

PurposeThe objective of the paper is to evaluate the fabrication process and to study the influence of process parameters of friction stir processing of 6061-TiB2-Al2O3 Aluminum alloy surface composite on microhardness tensile strength, and microstructure.Design/methodology/approachFriction stir processing method is used for attaining the desired mechanical properties, and selectively processed reinforcements to fabricate the samples. The Taguchi technique was used to optimize rotational speed, travel speed and volume percentage of reinforcement particles to enhance the mechanical properties of 6061-TiB2-Al2O3 Aluminum alloy composite.FindingsThe fabrication of surface composites through FSP allows new inventions in terms of material with enhanced surface layers without changing the base metal.Practical implicationsTo examine the behavior of the surface of the composites in the different zones, the practical implication consists of the use of different characterization techniques like optical microscopy and scanning microscopy for microstructural behavior and the measurement of hardness and tensile tests for mechanical behavior.Originality/valueThe research work consists of tool design and process parameters, which can affect the final product (microstructural changes), and the performance of the modified surface layer behavior was studied and presented.


2019 ◽  
Vol 813 ◽  
pp. 404-410
Author(s):  
Hardik Vyas ◽  
Kush P. Mehta

In the present investigation, friction stir processing (FSP) is carried out with multi pass processing having 100 % overlap zone on the workpiece material of aluminum alloy 6061 with constant FSP parameters and varying multi pass processing conditions. Novel processing concept of multi pass FSP was performed with different rotation directions (such as clock wise and anti-clock wise directions) and processing directions (such as forward, reverse and revert directions). Surface inspection, macrographs and microstructures of the processed regions are evaluated and compared with each other. Multi-pass FSP with 100 % overlapping of two passes caused intense dynamic recrystallization and resulted in reduced grain size. Hardness of processed zone was found increased in case of two pass FSP. Minimum tensile strength was reported with double sided FSP compare to single pass and two pass FSPs. No major variations in tensile strength were reported in case of single pass and two pass FSPs.


Sign in / Sign up

Export Citation Format

Share Document