scholarly journals Deleterious effects of nitrogen annealing on the mechanical properties of medium manganese steels

2018 ◽  
Vol 735 ◽  
pp. 436-440 ◽  
Author(s):  
R. Rana ◽  
G.A. Thomas ◽  
E. De Moor ◽  
J.G. Speer ◽  
D.K. Matlock
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Cagala ◽  
E. Mazancová ◽  
P. Lichý ◽  
J. Beňo ◽  
M. Břuska ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 726 ◽  
Author(s):  
Christian Haase ◽  
Luis Antonio Barrales-Mora

Arguably, steels are the most important structural material, even to this day. Numerous design concepts have been developed to create and/or tailor new steels suited to the most varied applications. High-manganese steels (HMnS) stand out for their excellent mechanical properties and their capacity to make use of a variety of physical mechanisms to tailor their microstructure, and thus their properties. With this in mind, in this contribution, we explore the possibility of extending the alloy design concepts that haven been used successfully in HMnS to the recently introduced high-entropy alloys (HEA). To this aim, one HMnS steel and the classical HEA Cantor alloy were subjected to cold rolling and heat treatment. The evolution of the microstructure and texture during the processing of the alloys and the resulting properties were characterized and studied. Based on these results, the physical mechanisms active in the investigated HMnS and HEA were identified and discussed. The results evidenced a substantial transferability of the design concepts and more importantly, they hint at a larger potential for microstructure and property tailoring in the HEA.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 575 ◽  
Author(s):  
Alexander Gramlich ◽  
Robin Emmrich ◽  
Wolfgang Bleck

New medium Mn steels for forged components, in combination with a new heat treatment, are presented. This new annealing process implies air-cooling after forging and austenite reversion tempering (AC + ART). This leads to energy saving compared to other heat treatments, like quenching and tempering (Q + T) or quenching and partitioning (Q + P). Furthermore, the temperature control of AC + ART is easy, which increases the applicability to forged products with large diameters. Laboratory melts distinguished by Ti, B, Mo contents have been casted and consecutively forged into semi-finished products. Mechanical properties and microstructure have been characterized for the AC and the AC + ART states. The as forged-state shows YS from 900 MPa to 1000 MPa, UTS from 1350 MPa to 1500 MPa and impact toughness from 15 J to 25 J. Through the formation of nanostructured retained metastable austenite an increase in impact toughness was achieved with values from 80 J to 100 J dependent on the chemical composition.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 797 ◽  
Author(s):  
Haupt ◽  
Müller ◽  
Haase ◽  
Sevsek ◽  
Brasche ◽  
...  

In this work, a Fe23Mn0.3C1Al high manganese twinning-induced plasticity (TWIP) steel is subjected to varying warm rolling procedures in order to increase the yield strength and maintain a notable ductility. A comprehensive material characterization allows for the understanding of the activated deformation mechanisms and their impact on the resulting microstructure, texture, and mechanical properties. The results show a significant enhancement of the yield strength compared to a fully recrystallized Fe23Mn0.3C1Al steel. This behavior is mainly dominated by the change of the active deformation mechanisms during rolling. Deformation twinning is very pronounced at lower temperatures, whereas this mechanism is suppressed at 500 °C and a thickness reduction of up to 50%. The mechanical properties can be tailored by adjusting rolling temperature and thickness reduction to desired applications.


Sign in / Sign up

Export Citation Format

Share Document