Direct laser deposition as repair technology for a low transformation temperature alloy: Microstructure, residual stress, and properties

2019 ◽  
Vol 748 ◽  
pp. 119-127 ◽  
Author(s):  
J.X. Fang ◽  
S.Y. Dong ◽  
S.B. Li ◽  
Y.J. Wang ◽  
B.S. Xu ◽  
...  
Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 263
Author(s):  
Sergei Ivanov ◽  
Antoni Artinov ◽  
Evgenii Zemlyakov ◽  
Ivan Karpov ◽  
Sergei Rylov ◽  
...  

The present work seeks to extend the level of understanding of the stress field evolution during direct laser deposition (DLD) of a 3.2 mm thick multilayer wall of Ti-6Al-4V alloy by theoretical and experimental studies. The process conditions were close to the conditions used to produce large-sized structures by the DLD method, resulting in specimens having the same thermal history. A simulation procedure based on the implicit finite element method was developed for the theoretical study of the stress field evolution. The accuracy of the simulation was significantly improved by using experimentally obtained temperature-dependent mechanical properties of the DLD-processed Ti-6Al-4V alloy. The residual stress field in the buildup was experimentally measured by neutron diffraction. The stress-free lattice parameter, which is decisive for the measured stresses, was determined using both a plane stress approach and a force-momentum balance. The influence of the inhomogeneity of the residual stress field on the accuracy of the experimental measurement and the validation of the simulation procedure are analyzed and discussed. Based on the numerical results it was found that the non-uniformity of the through-thickness stress distribution reaches a maximum in the central cross-section, while at the buildup ends the stresses are distributed almost uniformly. The components of the principal stresses are tensile at the buildup ends near the substrate. Furthermore, the calculated equivalent plastic strain reaches 5.9% near the buildup end, where the deposited layers are completed, while the plastic strain is practically equal to the experimentally measured ductility of the DLD-processed alloy, which is 6.2%. The experimentally measured residual stresses obtained by the force-momentum balance and the plane stress approach differ slightly from each other.


Vacuum ◽  
2019 ◽  
Vol 161 ◽  
pp. 225-231 ◽  
Author(s):  
Qiang Wang ◽  
Song Zhang ◽  
Chunhua Zhang ◽  
Jianqiang Wang ◽  
M. Babar Shahzad ◽  
...  

Author(s):  
Christopher Katinas ◽  
Shunyu Liu ◽  
Yung C. Shin

Understanding the capture efficiency of powder during direct laser deposition (DLD) is critical when determining the overall manufacturing costs of additive manufacturing (AM) for comparison to traditional manufacturing methods. By developing a tool to predict the capture efficiency of a particular deposition process, parameter optimization can be achieved without the need to perform a costly and extensive experimental study. The focus of this work is to model the deposition process and acquire the final track geometry and temperature field of a single track deposition of Ti–6Al–4V powder on a Ti–6Al–4V substrate for a four-nozzle powder delivery system during direct laser deposition with a LENS™ system without the need for capture efficiency assumptions by using physical powder flow and laser irradiation profiles to predict capture efficiency. The model was able to predict the track height and width within 2 μm and 31 μm, respectively, or 3.3% error from experimentation. A maximum of 36 μm profile error was observed in the molten pool, and corresponds to errors of 11% and 4% in molten pool depth and width, respectively. Based on experimentation, the capture efficiency of a single track deposition of Ti–6Al–4V was found to be 12.0%, while that from simulation was calculated to be 11.7%, a 2.5% deviation.


2021 ◽  
Vol 1037 ◽  
pp. 3-12
Author(s):  
Maxim Oleynik ◽  
Alexander I. Khaimovich ◽  
Andrey V. Balaykin

The paper describes determining the optimal direct laser deposition mode when processing the results of a two-factor experiment by the steep ascent method. The dependence of the ultimate tensile strength on the volumetric energy density and the lateral pitch was chosen as the target function.


Sign in / Sign up

Export Citation Format

Share Document