Experimental investigation on the dynamic flow behaviour and structure-property correlation of dual-phase high carbon steel at elevated temperatures

2020 ◽  
Vol 771 ◽  
pp. 138655 ◽  
Author(s):  
Amborish Banerjee ◽  
Hongxu Wang ◽  
Andrew Brown ◽  
Ali Ameri ◽  
Qiang Zhu ◽  
...  
2019 ◽  
Vol 54 (21) ◽  
pp. 13775-13786 ◽  
Author(s):  
Wilson Handoko ◽  
Farshid Pahlevani ◽  
Veena Sahajwalla

2019 ◽  
Vol 3 (3) ◽  
pp. 55 ◽  
Author(s):  
Wilson Handoko ◽  
Farshid Pahlevani ◽  
Rumana Hossain ◽  
Veena Sahajwalla

It is well known that stress-induced phase transformation in dual-phase steel leads to the degradation of bulk corrosion resistance properties. Predicting this behaviour in high carbon steel is imperative for designing this grade of steel for more advanced applications. Dual-phase high carbon steel consists of a martensitic structure with metastable retained austenite which can be transformed to martensite when the required energy is attained, and its usage has increased in the past decade. In this study, insight into the influence of deformed microstructures on corrosion behaviour of dual-phase high carbon steel was investigated. The generation of strain-induced martensite formation (SIMF) by residual stress through plastic deformation, misorientation and substructure formation was comprehensively conducted by EBSD and SEM. Tafel and EIS methods were used to determine corrosion intensity and the effect of corrosion behaviour on hardness properties. As a result of the static compression load, the retained austenite transformed into martensite, which lowered its corrosion rate by 5.79% and increased the dislocation density and the length of high-angle grain boundaries. This study demonstrates that balancing the fraction of the martensite phase in structure and dislocation density, including the length of high-angle grain boundaries, will result in an increase in the corrosion rate in parallel with the applied compression load.


2018 ◽  
Vol 49 (6) ◽  
pp. 2986-2997 ◽  
Author(s):  
Yasuhiro Tanaka ◽  
Farshid Pahlevani ◽  
Karen Privat ◽  
Suk-Chun Moon ◽  
Rian Dippenaar ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wilson Handoko ◽  
Aayush Anurag ◽  
Farshid Pahlevani ◽  
Rumana Hossain ◽  
Karen Privat ◽  
...  

Abstract It is commonly known that precipitation of secondary phase in non-ferrous alloys will affect the mechanical properties of them. But due to the nature of dual-phase low-alloy high-carbon steel and its high potential of precipitation of cementite, there is limited study on tailoring the mechanical and corrosion properties of this grade of steel by controlling the precipitation of different phases. Predicting and controlling precipitation behaviour on this grade of steel is of great importance towards producing more advanced applications using this low-cost alloy. In this study the new concept of selective-precipitation process for controlling the mechanical and corrosion behaviour of dual-phase low-alloy high-carbon steel has been introduced. We have investigated the precipitation of different phases using in-situ observation ultra-high temperature confocal scanning laser microscopy, image analyser – ImageJ, scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and electron probe microanalysis (EPMA). Volume fraction of each phase including retained austenite, martensite and precipitated phases was determined by X-ray diffraction (XRD), electrochemical corrosion test by Tafel extrapolation method and hardness performance by nanoindentation hardness measurement. The experimental results demonstrated that, by controlling the precipitations inside the matrix and at grain boundaries through heat treatment, we can increase the hardness of steel from 7.81 GPa to 11.4 GPa. Also, corrosion resistance of steel at different condition has been investigated. This new approach will open new possibility of using this low-cost steel for high performance applications.


Sign in / Sign up

Export Citation Format

Share Document