Thermal conductivity effects on steady state propagation speed during self-propagating high-temperature synthesis of Ti+C green compacts

2008 ◽  
Vol 147 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Z. Huque ◽  
G.M.S. Azad
2018 ◽  
Vol 913 ◽  
pp. 803-810 ◽  
Author(s):  
Wen Qiang Ma ◽  
Cheng Jie Deng ◽  
Jin Le Lan ◽  
Xiao Ping Yang ◽  
Yuan Hua Lin

Polycrystalline Bi1-xCuSeO (0 ≤ x ≤ 0.05) ceramics were prepared by self-propagating high-temperature synthesis followed by spark plasma sintering method. All the samples correspond with single BiCuSeO phase and high vacancies sample had higher density. The highest power factor of 4.71×10-4 W.m-1.K-2 was obtained by 5% Bi vacancies at 873K, which is about 32% higher than that of the pristine sample. Along with slight reduction of thermal conductivity, the maximum ZT reached 0.68. The results show that vacancy engineering is a promising method for thermoelectric applications of BiCuSeO and related ceramics.


2001 ◽  
Vol 16 (1) ◽  
pp. 93-100 ◽  
Author(s):  
O. A. Graeve ◽  
E. M. Carrillo-Heian ◽  
A. Feng ◽  
Z. A. Munir

A model was developed to study the process of current-ignited combustion synthesis. In this process, Joule heating raises the temperature to the ignition point, at which the sample reacts to form a product. Two material systems were modeled: the synthesis of SiC and MoSi2. It was found that the mode of combustion is a function of the size (radius) of the sample. The anticipated volume combustion mode was only evident in small samples. At higher values of the radius, the mode becomes wavelike (selfpropagating high-temperature synthesis) in nature. The transition from volume to wave combustion mode also depended on the properties of the material. The results are interpreted in terms of thermal conductivity and heat-transfer conditions.


2007 ◽  
Vol 43 (4) ◽  
pp. 239-242
Author(s):  
S. Kh. Suleimanov ◽  
O. A. Dudko ◽  
V. G. Dyskin ◽  
Z. S. Settarova ◽  
M. U. Dzhanklych

2015 ◽  
Vol 25 (12) ◽  
pp. 659-665
Author(s):  
Sin Hyong Joo ◽  
Hayk H. Nersisyan ◽  
Tae Hyuk Lee ◽  
Young Hee Cho ◽  
Hong Moule Kim ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2426
Author(s):  
Vladimir Promakhov ◽  
Alexey Matveev ◽  
Nikita Schulz ◽  
Mikhail Grigoriev ◽  
Andrey Olisov ◽  
...  

Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.


Author(s):  
Xiaoqiao Li ◽  
Linming Zhou ◽  
Han Wang ◽  
Dechao Meng ◽  
Guannan Qian ◽  
...  

Crystalline materials are routinely produced via high-temperature synthesis and show size-dependent properties; however, a rational approach to regulating their crystal growth has not been established. Here we show that dopants...


Sign in / Sign up

Export Citation Format

Share Document