Interaction between mucoadhesive cellulose derivatives and Pluronic F127: Investigation on the micelle structure and mucoadhesive performance

2021 ◽  
Vol 119 ◽  
pp. 111643
Author(s):  
Jéssica Bassi da Silva ◽  
Rafaela Said dos Santos ◽  
Monique Bassi da Silva ◽  
Gustavo Braga ◽  
Michael Thomas Cook ◽  
...  
2002 ◽  
Vol 177 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Evelin Jaehne ◽  
Thomas Kowalik ◽  
Hans-Juergen P. Adler ◽  
Andreas Plagge ◽  
Martin Stratmann

2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


2020 ◽  
Vol 21 (15) ◽  
pp. 1688-1698
Author(s):  
Germeen N.S. Girgis

Purpose: The work was performed to investigate the feasibility of preparing ocular inserts loaded with Poly-ε-Caprolactone (PCL) nanoparticles as a sustained ocular delivery system. Methods: First, Atorvastatin Calcium-Poly-ε-Caprolactone (ATC-PCL) nanoparticles were prepared and characterized. Then, the optimized nanoparticles were loaded within inserts formulated with Methylcellulose (MC) and Polyvinyl Alcohol (PVA) by a solvent casting technique and evaluated physically, for in-vitro drug release profile. Finally, an in-vivo study was performed on the selected formulation to prove non-irritability and sustained ocular anti-inflammatory efficacy compared with free drug-loaded ocuserts. Results: The results revealed (ATC-PCL) nanoparticles prepared with 0.5% pluronic F127 were optimized with 181.72±3.6 nm particle size, 0.12±0.02 (PDI) analysis, -27.4± 0.69 mV zeta potential and 62.41%±4.7% entrapment efficiency. Nanoparticles loaded ocuserts manifested compatibility between drug and formulation polymers. Moreover, formulations complied with average weight 0.055±0.002 to 0.143±0.023 mg, and accepted pH. ATC-PCL nanoparticles loaded inserts prepared by 5% MC showed more sustained, prolonged in-vitro release over 24h. In-vivo study emphasized non-irritability, ocular anti-inflammatory effectiveness represented by smaller lid closure scores, and statistically significant lowering in PMN count after 3h. Conclusion: These findings proposed a possibly simple, new and affordable price technique to prepare promising (ATC-PCL) nanoparticles loaded inserts to achieve sustained release with prolonged antiinflammatory efficacy.


2013 ◽  
Vol 9 (3) ◽  
pp. 252-260
Author(s):  
M. Stawny ◽  
K. Dettlaff ◽  
B. Marciniec ◽  
E. Jaroszkiewicz ◽  
B. Czajka ◽  
...  

1993 ◽  
Vol 58 (2) ◽  
pp. 445-451 ◽  
Author(s):  
Vladimír Žúbor ◽  
Albert Breier ◽  
Marta Horváthová ◽  
Dagmar Hagarová ◽  
Peter Gemeiner ◽  
...  

The crude extract of cytosole enzymes was obtained from homogenized cells of Saccharomyces cerevisiae by partition. The enzyme was then isolated from the lower aqueous phase displaying higher glycerol kinase activity by dye-ligand chromatography on Cibacron Blue (CB) or Remazol Brilliant Blue R (RB)-derivatized bead-cellulose, ATP being the eluent. The specific activity of glycerol kinase rised more than 10 and 7-times after affinity dye-ligand chromatography and hydrophobic interaction chromatography, respectively. Glycerol kinase obtained by the latter method was purified by CB-bead cellulose. The final preparation maintained its enzymic activity without noticeable losses during a long-term storage at 4 °C in dark.


2021 ◽  
Vol 183 ◽  
pp. 1236-1247
Author(s):  
Cesar Augusto Roque-Borda ◽  
Hanyeny Raiely Leite Silva ◽  
Edson Crusca Junior ◽  
Jéssica Aparecida Serafim ◽  
Andréia Bagliotti Meneguin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document