glycol succinate
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 58)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Alaa Abdul-Jabbar Hashim ◽  
Nawal A. Rajab

Anastrozole (ANZ) is considered constitute of the fourth –generation of Non–steroidal aromatase blockage, ANZ has use for hormone receptor positive breast cancer in postmenopausal women. The serious side effects of ANZ including, vaginal dryness, hot flashes, irritability, breast tenderness and un–stability in circulation. Nanostructured lipid carriers (NLCs) have recently emerged as a multifunctional platform for drug delivery in cancer therapy. Five formula were composed of (200 mg of glyceryl monostearate, 40 mg of oleic acid , 1% (w/w) Tween 80, 1% (w/w) Poloxamer 407, 1% (w/w) soy lecithin and Vitamin E Polyethylene Glycol Succinate. The mean particle size, polydispersity index, zeta potential, entrapment efficiency, loading capacity range of optimum formula F05 (166±3.86 nm), (0.271±0.04), (–23.7±2.65 mV), (42.43±3.90%) and (1.23±0.35%) respectively that prepared by same above composition but higher amplitude value (70%). The in–vitro drug leakage study demonstrated intact formula through 5 hours, with an approximately 78.37% of the drug was encapsulated, that exhibit an anomalous release mechanism.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3177
Author(s):  
Moein Zarei ◽  
Miroslawa El Fray

Polymeric materials have numerous applications from the industrial to medical fields because of their vast controllable properties. In this study, we aimed to synthesize series of poly(butylene succinate-dilinoleic succinate-ethylene glycol succinate) (PBS-DLS-PEG) copolymers, by two-step polycondensation using a heterogeneous catalyst and a two-step process. PEG of different molecular weights, namely, 1000 g/mol and 6000 g/mol, was used in order to study its effect on the surface and thermal properties. The amount of the PBS hard segment in all copolymers was fixed at 70 wt%, while different ratios between the soft segments (DLS and PEG) were applied. The chemical structure of PBS-DLS-PEG was evaluated using Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Gel permeation chromatography was used to determine the molecular weight and dispersity index. The results of structural analysis indicate the incorporation of PEG in the macrochain. The physical and thermal properties of the newly synthesized copolymers were also evaluated using water contact angle measurements, differential scanning calorimetry and dynamic thermomechanical analysis. It was found that increasing the amount of PEG of a higher molecular weight increased the surface wettability of the new materials while maintaining their thermal properties. Importantly, the two-step melt polycondensation allowed a direct fabrication of a polymeric filament with a well-controlled diameter directly from the reactor. The obtained results clearly show that the use of two-step polycondensation in the melt allows obtaining novel PBS-DLS-PEG copolymers and creates new opportunities for the controlled processing of these hydrophilic and thermally stable copolymers for 3D printing technology, which is increasingly used in medical techniques.


2021 ◽  
Author(s):  
Adnan M. Jasim ◽  
Mohammed J. Jawad

D-tocopheryl polyethylene glycol succinate (Vitamin E TPGS) has been approved as a safe pharmaceutical adjuvant by FDA, and several drug delivery systems (DDS) based on TPGS have been developed. TPGS properties as a P-gp inhibitor, solubilizer/absorption and permeation enhancer in drug delivery and TPGS-related formulations such as nanocrystals, nanosuspensions, tablets/solid dispersions, vaccine system adjuvant, nutritional supplement, film plasticizer, anticancer reagent, and so on, are discussed in this review. Consequenly, TPGS can inhibit ATP-dependent P-glycoprotein activity and act as a potent excipient that promotes the efficiency of delivery and the therapeutic effect of drugs. Inhibition of P-gp occurs through mitochondria-dependent inhibition of the P-gp pump. Many of the latest studies address the use of TPGS for many poorly water-soluble or permeable drugs in the manufacture of nanodrugs or other formulations. In addition, it has been reported that TPGS shows a robust improvement in chylomicron secretion at low concentrations and improves intestinal lymphatic transport, which would also boost the potential of drug absorption. It also indicates that there are still many problems facing clinical translation of TPGS-based nanomedicines, requiring a more deep evaluation of TPGS properties and a future-based delivery method.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1347
Author(s):  
Sabna Kotta ◽  
Hibah Mubarak Aldawsari ◽  
Shaimaa M. Badr-Eldin ◽  
Lenah S. Binmahfouz ◽  
Rana Bakur Bakhaidar ◽  
...  

Acute respiratory distress syndrome (ARDS), a catastrophic illness of multifactorial etiology, involves a rapid upsurge in inflammatory cytokines that leads to hypoxemic respiratory failure. Dexamethasone, a synthetic corticosteroid, mitigates the glucocorticoid-receptor-mediated inflammation and accelerates tissue homeostasis towards disease resolution. To minimize non-target organ side effects arising from frequent and chronic use of dexamethasone, we designed biodegradable, lung-targeted microspheres with sustained release profiles. Dexamethasone-loaded lipopolymeric microspheres of PLGA (Poly Lactic-co-Glycolic Acid) and DPPC (Dipalmitoylphosphatidylcholine) stabilized with vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate) were prepared by a single emulsion technique that had a mean diameter of 8.83 ± 0.32 μm and were spherical in shape as revealed from electron microscopy imaging. Pharmacokinetic and biodistribution patterns studied in the lungs, liver, and spleen of Wistar rats showed high selectivity and targeting efficiency for the lung tissue (re 13.98). As a proof-of-concept, in vivo efficacy of the microspheres was tested in the lipopolysaccharide-induced ARDS model in rats. Inflammation markers such as IL-1β, IL-6, and TNF-α, quantified in the bronchoalveolar lavage fluid indicated major improvement in rats treated with dexamethasone microspheres by intravenous route. Additionally, the microspheres substantially inhibited the protein infiltration, neutrophil accumulation and lipid peroxidation in the lungs of ARDS bearing rats, suggesting a reduction in oxidative stress. Histopathology showed decreased damage to the pulmonary tissue upon treatment with the dexamethasone-loaded microspheres. The multipronged formulation technology approach can thus serve as a potential treatment modality for reducing lung inflammation in ARDS. An improved therapeutic profile would help to reduce the dose, dosing frequency and, eventually, the toxicity.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1327
Author(s):  
Wen-Ying Huang ◽  
Chih-Ho Lai ◽  
Shin-Lei Peng ◽  
Che-Yu Hsu ◽  
Po-Hung Hsu ◽  
...  

Gastric cancer (GC) is a fatal malignant tumor, and effective therapies to attenuate its progression are lacking. Nanoparticle (NP)-based solutions may enable the design of novel treatments to eliminate GC. Refined, receptor-targetable NPs can selectively target cancer cells and improve the cellular uptake of drugs. To overcome the current limitations and enhance the therapeutic effects, epigallocatechin-3-gallate (EGCG) and low-concentration doxorubicin (DX) were encapsulated in fucoidan and d-alpha-tocopherylpoly (ethylene glycol) succinate-conjugated hyaluronic acid-based NPs for targeting P-selectin-and cluster of differentiation (CD)44-expressing gastric tumors. The EGCG/DX-loaded NPs bound to GC cells and released bioactive combination drugs, demonstrating better anti-cancer effects than the EGCG/DX combination solution. In vivo assays in an orthotopic gastric tumor mouse model showed that the EGCG/DX-loaded NPs significantly increased the activity of gastric tumors without inducing organ injury. Overall, our EGCG/DX-NP system exerted a beneficial effect on GC treatment and may facilitate the development of nanomedicine-based combination chemotherapy against GC in the future.


Sign in / Sign up

Export Citation Format

Share Document