scholarly journals Plasmonic Bi nanoparticles encapsulated by N-Carbon for dual-imaging and photothermal/photodynamic/chemo-therapy

Author(s):  
Yifei Chang ◽  
Qingcheng Bai ◽  
Miao Wang ◽  
Yajie Ma ◽  
Kai Yu ◽  
...  
Choonpa Igaku ◽  
2018 ◽  
Vol 45 (2) ◽  
pp. 183-186
Author(s):  
Hiroyuki FUKUDA ◽  
Kazushi NUMATA ◽  
Katsuaki TANAKA ◽  
Shin MAEDA ◽  
Ryu ITO

2020 ◽  
Vol 44 (19) ◽  
pp. 7749-7757 ◽  
Author(s):  
Wen Jia ◽  
Dong Peng ◽  
Zijuan Feng ◽  
Xue Wu ◽  
Yi Liu ◽  
...  

Concomitant formation of metallic Bi nanoparticles and oxygen vacancies was successfully achieved within Bi/BiOBr/RGO composites by green UV-light exposure.


Author(s):  
Kohei Mitsui ◽  
Mitsunaga Narushima ◽  
Ryohei Ishiura ◽  
Kanako Danno ◽  
Yosuke Sakakura ◽  
...  
Keyword(s):  

2014 ◽  
Vol 20 (2) ◽  
pp. 416-424 ◽  
Author(s):  
Kai-Yang Niu ◽  
Hong-Gang Liao ◽  
Haimei Zheng

AbstractCoalescence is a significant pathway for the growth of nanostructures. Here we studied the coalescence of Bi nanoparticles in situ by liquid cell transmission electron microscopy (TEM). The growth of Bi nanoparticles was initiated from a bismuth neodecanoate precursor solution by electron beam irradiation inside a liquid cell under the TEM. A significant number of coalescence events occurred from the as-grown Bi nanodots. Both symmetric coalescence of two equal-sized nanoparticles and asymmetric coalescence of two or more unequal-sized nanoparticles were analyzed along their growth trajectories. Our observation suggests that two mass transport mechanisms, i.e., surface diffusion and grain boundary diffusion, are responsible for the shape evolution of nanoparticles after a coalescence event.


2018 ◽  
Vol 33 (11) ◽  
pp. 737-747
Author(s):  
Ting-ting Li ◽  
Tomoya Inose ◽  
Takahiro Oikawa ◽  
Masayuki Tokunaga ◽  
Keiichiro Hatoyama ◽  
...  

2021 ◽  
Author(s):  
marco cardinale ◽  
Gaetano Di Achille ◽  
David A.Vaz

<p>Orbital data from the Messenger spacecraft (1) reveal that part of the Mercury surface is covered by smooth plains, which are interpreted to be flood volcanic material across the planetary surface (2). In this work, we present a detailed geo-structural map of the northern smooth plains between<span class="Apple-converted-space">  </span>latitudes 29°N and 65°N. Our 1:100.000-scale map is obtained semi-automatically, using an algorithm to map all scarps from a DEM (3,4) followed by visual inspection and classification in ArcGIS. We created a DEM<span class="Apple-converted-space">  </span>using the raw MLA (Mercury Laser Altimeter) data (1) ,with 500 m/pix, and we used the Mercury Messenger MDIS (Mercury Dual Imaging System) (1,2) base map with 166m per pixel for the classification stage. With this approach, we mapped and characterized 51664 features on Mercury, creating a database with several morphometric attributes (e.g. length, azimuth, scarp height) which we will use to study the tectonic evolution of the smooth plains.<span class="Apple-converted-space"> </span></p> <p>In this way, we classified wrinkle ridges’s scarps, ghost craters, rim craters and central peaks. The morphometric parameters of the wrinkle ridges will<span class="Apple-converted-space">  </span>be quantitatively analyzed, in order to characterizer the possible tectonic process that could have formed them.</p> <p>This map can be considered an enhancement for the north pole of the global geological map of Mercury (1, 5).</p> <p> </p> <p>References</p> <ul> <li>Hawkins, S. E., III, et al. (2007), The Mercury Dual Imaging System on the MESSENGER spacecraft, Space Sci. Rev., 131, 247–338..<span class="Apple-converted-space"> </span></li> <li>Denevi, B. W., et al. (2013), The distribution and origin of smooth plains on Mercury, J. Geophys. Res. Planets, 118, 891–907, doi:10.1002/jgre.20075.</li> <li>Alegre Vaz, D. (2011). Analysis of a Thaumasia Planum rift through automatic mapping and strain characterization of normal faults. Planetary and Space Science, 59(11-12), 1210–1221. doi:10.1016/j.pss.2010.07.008 .</li> <li>Vaz, D. A., Spagnuolo, M. G., & Silvestro, S. (2014). Morphometric and geometric characterization of normal faults on Mars. Earth and Planetary Science Letters, 401, 83–94. doi:10.1016/j.epsl.2014.05.022.</li> <li>Kinczyk, M. J., Prockter, L., Byrne, P., Denevi, B., Buczkowski, D., Ostrach, L., & Miller, E. (2019, September). The First Global Geological Map of Mercury. In <em>EPSC-DPS Joint Meeting 2019</em> (Vol. 2019, pp. EPSC-DPS2019).</li> </ul>


Sign in / Sign up

Export Citation Format

Share Document